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This course introduces a theory of
robust and concurrent computing…
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Major chip manufacturers have recently
announced a major paradigm shift:

New York Times, 8 May 2004:
Intel … [has] decided to focus its development efforts on 
«dual core» processors … with two engines instead of one, 
allowing for greater efficiency because the processor
workload is essentially shared.

Multi-processors and Multicores
vs 

faster processors

(Thanks for the quote, Maurice Herlihy.)
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The clock speed of a processor
cannot be increased without
overheating.

But

More and more processors can fit in 
the same space.
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(hat tip: Simon Peyton-Jones)

Clock speed 
flattening 

sharply

Transistor 
count still 

rising

Slide borrowed from Maurice Herlihy’s talk at PODC 2008: 
“The Future of Distributed Computing: Renaissance or Reformation?”
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Speed will be achieved by having several
processors work on independent parts of a 
task.

But

The processors would occasionally need to 
pause and synchronize.

But

If the task is shared, then pure parallelism is 
usually impossible and, at best, inefficient.
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Concurrent computing for 
the masses

Forking processes might be more frequent

But…

Concurrent accesses to shared objects might
become more problematic and harder.
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How do devices synchronize?

Shared object

Concurrent processes
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Locking (mutual exclusion)

How do devices synchronize?
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Locked object

One process at a time

How do devices synchronize?
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Locking (mutual exclusion)

Difficult: 50% of the bugs reported in 
Java come from the use of
« synchronized »

Fragile: a process holding a lock
prevents all others from progressing

Other: deadlock, livelock, priority
inversion, etc.

How do devices synchronize?
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Processes are asynchronous

Page faults
Pre-emptions
Failures
Cache misses, …

A process can be delayed by millions of
instructions …

Why is locking hard?
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Alternative to locking?
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Wait-free atomic objects

Wait-freedom: every process that
invokes an operation eventually returns
from the invocation 
o Robust … unlike locking.

Atomicity: every operation appears to 
execute instantaneously. 
o As if the object were locked.
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In short

This course shows how to 
wait-free implement high-level
atomic objects out of more
primitive base objects.



16Shared object

Concurrent processes
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Timing: 
• Class: Monday 9:15-11:00

• Exercise sessions: Monday 11:15-12:00
– Room: BC03

– First session: Week 3

Text book:
• None.  Handouts on the webpage.

Final Exam:
• Written, closed-book, date/time/room TBA.

Administrative Issues
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What about the other class?

« Distributed Computing »
Monday, 15:15-17:00, ELA01

• The courses are complementary.
– This course: shared memory.
– Other course: message passing.

• Consider taking both!  (Recommended…)

Administrative Issues
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1. Introduction: 
• What is the goal of this course?

2. Model:
• Processes and objects

• Atomicity

• Wait-freedom

3. Examples

Today’s Lecture:
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Processes

We assume a finite set of processes:
– Processes have unique identifiers. 

– Processes are denoted as « p1, …, pN »
or « p, q, r »

– Processes know each other.

– Processes can coordinate via shared objects.
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Processes

We assume a finite set of processes:
– Each process models a sequential program.

– Each clock tick each process takes a step.

– In each step, a process:
a) Performs some computation.  (LOCAL)

b) Initiates an operation on a shared object. (GLOBAL)

c) Receives a response from an operation. (GLOBAL)

– We make no assumptions on process
(relative) speeds.  (Asynchronous)
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Processes

p1

p2

p3
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Processes
Crash Failures:

A process either executes the algorithm
assigned to it or crashes.

A process that crashes does not recover. 

A process that does not crash in a given
execution (computation or run) is called
correct (in that execution).
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Processes

p1

p2

p3

crash
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On objects and processes

Processes interact via shared objects: 

A process can initiate an operation
on a particular object.

Every operation is expected to   
return a reply.

Each process can initiate only one 
operation at a time.
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Processes

p1

p2

p3

operation

operation

operation
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On objects and processes

Sequentiality:

– After invoking an operation op1 on 
some object O1…

– A process does not invoke a new 
operation on the same or on some 
other object…

– Until it receives the reply for op1.

Remark. Sometimes we talk about 
operations when we should be talking 
about operation invocations
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Processes

p1

p2

p3

operation

operation

operation
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Atomicity

We mainly focus in this course on how 
to implement atomic objects.

Atomicity (or linearizability):

– Every operation appears to execute 
at some indivisible point in time.

– This is called the linearization point.

– This point is between the invocation
and the reply.
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Atomicity

p1

p2

p3

operation

operation

operation
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Atomicity

p1

p2

p3

operation

operation

operation
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Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash
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Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2
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Atomicity (the crash case)

p1

p2

p3

operation

operation

p2
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Atomicity

Theorem:
Consider executions of algorithm A in which every 
operation completes.

If every such execution is atomic, then A guarantees 
atomicity in all executions (even those with operations 
that do not complete).
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We mainly focus in this course on wait-free
implementations

An implementation is wait-free if: 

• Any correct process that invokes an  
operation eventually gets a reply. 

• This does not depend on any other process.  

• Other processes may crash or be very slow.

Wait-freedom
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Wait-freedom

p1

p2

p3

operation
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Wait-freedom

Wait-freedom conveys the robustness of 
the implementation

With a wait-free implementation, a 
process gets replies despite the crash of 
the n-1 other processes 

Note that this precludes implementations 
based on locks (i.e., mutual exclusion).
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Wait-freedom

p1

p2

p3

crash

operation

crash
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1. Introduction: 
• What is the goal of this course?

2. Model:
• Processes and objects

• Atomicity

• Wait-freedom

3. Examples

Today’s Lecture:
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Most synchronization primitives 
(problems) can be precisely expressed 
as atomic objects (implementations)

Studying how to ensure robust 
synchronization boils down to studying 
wait-free atomic object implementations 

Motivation
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Example 1

The reader/writer synchronization 
problem corresponds to the register
object

Basically, the processes need to read or 
write a shared data structure such that 
the value read by a process at a time t, 
is the last value written before t
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Register

A register has two operations: 

– read()

– write()

Assume (for simplicity) that: 
– a register contains an integer
– the register is denoted by x
– the register is initially 0
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Read/Write Register

Sequential specification:

read()
return(x)

write(v)
x ← v; 
return(ok)
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok



47

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok
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Atomicity?

p1

p2

p3

read() - 1

read() - 1

write(1) - ok



50

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1
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Example 2

Producer/consumer synchronization: 
corresponds to the queue object.

Producer processes create items; 
consumer processes use items.

Requirements:
– An item cannot be consumed by 2 processes. 

– The first item produced is the first consumed 
(FIFO).
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Queue

A queue has two operations: 
enqueue() and dequeue()

We assume that a queue internally 
maintains a list x which supports:
– append(): put an item at the end of the list;

– remove(): remove an element from the head 
of the list.
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Sequential specification

dequeue()
if (x = 0) then return(nil);
else return(x.remove())

enqueue(v)
x.append(v);
return(ok)
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

enq(y) - ok
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - x

enq(y) - ok
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Content

(1) Implementing registers

(2) The power & limitation of registers

(3) Universal objects & synchronization number

(4) The power of time & failure detection

(5) Tolerating failure prone objects 

(6) Anonymous implementations

(7) Transaction memory
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In short
This course shows how to wait-free
implement high-level atomic objects
out of basic objects

Remark: unless explicitely stated otherwise: 
objects mean atomic objects and
implementations are wait-free. 
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