
© R. Guerraoui 1

Seth Gilbert
http://lpd.epfl.ch

Professor: Rachid Guerraoui
Assistants: M. Kapalka and A. Dragojevic
Distributed Programming Laboratory

Special Topics in
Distributed Computing:

Shared Memory Algorithms

2

This course introduces a theory of
robust and concurrent computing…

3

Major chip manufacturers have recently
announced a major paradigm shift:

New York Times, 8 May 2004:
Intel … [has] decided to focus its development efforts on
«dual core» processors … with two engines instead of one,
allowing for greater efficiency because the processor
workload is essentially shared.

Multi-processors and Multicores
vs

faster processors

(Thanks for the quote, Maurice Herlihy.)

4

The clock speed of a processor
cannot be increased without
overheating.

But

More and more processors can fit in
the same space.

5

(hat tip: Simon Peyton-Jones)

Clock speed
flattening

sharply

Transistor
count still

rising

Slide borrowed from Maurice Herlihy’s talk at PODC 2008:
“The Future of Distributed Computing: Renaissance or Reformation?”

6

Speed will be achieved by having several
processors work on independent parts of a
task.

But

The processors would occasionally need to
pause and synchronize.

But

If the task is shared, then pure parallelism is
usually impossible and, at best, inefficient.

7

Concurrent computing for
the masses

Forking processes might be more frequent

But…

Concurrent accesses to shared objects might
become more problematic and harder.

8

How do devices synchronize?

Shared object

Concurrent processes

9

Locking (mutual exclusion)

How do devices synchronize?

10

Locked object

One process at a time

How do devices synchronize?

11

Locking (mutual exclusion)

Difficult: 50% of the bugs reported in
Java come from the use of
« synchronized »

Fragile: a process holding a lock
prevents all others from progressing

Other: deadlock, livelock, priority
inversion, etc.

How do devices synchronize?

12

Processes are asynchronous

Page faults
Pre-emptions
Failures
Cache misses, …

A process can be delayed by millions of
instructions …

Why is locking hard?

13

Alternative to locking?

14

Wait-free atomic objects

Wait-freedom: every process that
invokes an operation eventually returns
from the invocation
o Robust … unlike locking.

Atomicity: every operation appears to
execute instantaneously.
o As if the object were locked.

15

In short

This course shows how to
wait-free implement high-level
atomic objects out of more
primitive base objects.

16Shared object

Concurrent processes

17

Timing:
• Class: Monday 9:15-11:00

• Exercise sessions: Monday 11:15-12:00
– Room: BC03

– First session: Week 3

Text book:
• None. Handouts on the webpage.

Final Exam:
• Written, closed-book, date/time/room TBA.

Administrative Issues

18

What about the other class?

« Distributed Computing »
Monday, 15:15-17:00, ELA01

• The courses are complementary.
– This course: shared memory.
– Other course: message passing.

• Consider taking both! (Recommended…)

Administrative Issues

19

1. Introduction:
• What is the goal of this course?

2. Model:
• Processes and objects

• Atomicity

• Wait-freedom

3. Examples

Today’s Lecture:

20

Processes

We assume a finite set of processes:
– Processes have unique identifiers.

– Processes are denoted as « p1, …, pN »
or « p, q, r »

– Processes know each other.

– Processes can coordinate via shared objects.

21

Processes

We assume a finite set of processes:
– Each process models a sequential program.

– Each clock tick each process takes a step.

– In each step, a process:
a) Performs some computation. (LOCAL)

b) Initiates an operation on a shared object. (GLOBAL)

c) Receives a response from an operation. (GLOBAL)

– We make no assumptions on process
(relative) speeds. (Asynchronous)

22

Processes

p1

p2

p3

23

Processes
Crash Failures:

A process either executes the algorithm
assigned to it or crashes.

A process that crashes does not recover.

A process that does not crash in a given
execution (computation or run) is called
correct (in that execution).

24

Processes

p1

p2

p3

crash

25

On objects and processes

Processes interact via shared objects:

A process can initiate an operation
on a particular object.

Every operation is expected to
return a reply.

Each process can initiate only one
operation at a time.

26

Processes

p1

p2

p3

operation

operation

operation

27

On objects and processes

Sequentiality:

– After invoking an operation op1 on
some object O1…

– A process does not invoke a new
operation on the same or on some
other object…

– Until it receives the reply for op1.

Remark. Sometimes we talk about
operations when we should be talking
about operation invocations

28

Processes

p1

p2

p3

operation

operation

operation

29

Atomicity

We mainly focus in this course on how
to implement atomic objects.

Atomicity (or linearizability):

– Every operation appears to execute
at some indivisible point in time.

– This is called the linearization point.

– This point is between the invocation
and the reply.

30

Atomicity

p1

p2

p3

operation

operation

operation

31

Atomicity

p1

p2

p3

operation

operation

operation

32

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash

33

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

34

Atomicity (the crash case)

p1

p2

p3

operation

operation

p2

35

Atomicity

Theorem:
Consider executions of algorithm A in which every
operation completes.

If every such execution is atomic, then A guarantees
atomicity in all executions (even those with operations
that do not complete).

36

We mainly focus in this course on wait-free
implementations

An implementation is wait-free if:

• Any correct process that invokes an
operation eventually gets a reply.

• This does not depend on any other process.

• Other processes may crash or be very slow.

Wait-freedom

37

Wait-freedom

p1

p2

p3

operation

38

Wait-freedom

Wait-freedom conveys the robustness of
the implementation

With a wait-free implementation, a
process gets replies despite the crash of
the n-1 other processes

Note that this precludes implementations
based on locks (i.e., mutual exclusion).

39

Wait-freedom

p1

p2

p3

crash

operation

crash

40

1. Introduction:
• What is the goal of this course?

2. Model:
• Processes and objects

• Atomicity

• Wait-freedom

3. Examples

Today’s Lecture:

41

Most synchronization primitives
(problems) can be precisely expressed
as atomic objects (implementations)

Studying how to ensure robust
synchronization boils down to studying
wait-free atomic object implementations

Motivation

42

Example 1

The reader/writer synchronization
problem corresponds to the register
object

Basically, the processes need to read or
write a shared data structure such that
the value read by a process at a time t,
is the last value written before t

43

Register

A register has two operations:

– read()

– write()

Assume (for simplicity) that:
– a register contains an integer
– the register is denoted by x
– the register is initially 0

44

Read/Write Register

Sequential specification:

read()
return(x)

write(v)
x ← v;
return(ok)

45

Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok

46

Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok

47

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok

48

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok

49

Atomicity?

p1

p2

p3

read() - 1

read() - 1

write(1) - ok

50

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

51

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0

52

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0

53

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0

54

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

55

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

56

Example 2

Producer/consumer synchronization:
corresponds to the queue object.

Producer processes create items;
consumer processes use items.

Requirements:
– An item cannot be consumed by 2 processes.

– The first item produced is the first consumed
(FIFO).

57

Queue

A queue has two operations:
enqueue() and dequeue()

We assume that a queue internally
maintains a list x which supports:
– append(): put an item at the end of the list;

– remove(): remove an element from the head
of the list.

58

Sequential specification

dequeue()
if (x = 0) then return(nil);
else return(x.remove())

enqueue(v)
x.append(v);
return(ok)

59

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok

60

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok

61

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

enq(y) - ok

62

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - x

enq(y) - ok

63

Content

(1) Implementing registers

(2) The power & limitation of registers

(3) Universal objects & synchronization number

(4) The power of time & failure detection

(5) Tolerating failure prone objects

(6) Anonymous implementations

(7) Transaction memory

64

In short
This course shows how to wait-free
implement high-level atomic objects
out of basic objects

Remark: unless explicitely stated otherwise:
objects mean atomic objects and
implementations are wait-free.

	Special Topics in�Distributed Computing:�Shared Memory Algorithms�
	Processes
	Processes
	Atomicity

