Transactional Memory

Michat Kapatka

Concurrent Algorithms 2009



Outline

Why?

What?

How?



Why?



Problem

Hypothesis: implementing wait-free (obstruction-free)
atomic objects efficiently is difficult.

Note: universal construction is sometimes too expensive.

Example: see previous lectures...



Problem

Hypothesis 2: implementing scalable data structures
using locks is also difficult.

Example: ...



Problems with Locks

m implicit object-lock mapping



Problems with Locks

From the Linux kernel:

/*

¥ X X X X

When a locked buffer is visible to the I/0 layer
BH_Launder is set. This means before unlocking

we must clear BH_Launder,mb on alpha and then
clear BH Lock, so no reader can see BH Launder set
on an unlocked buffer and then risk to deadlock.



Problems with Locks

m implicit mapping
m lock contention
m deadlock

m lost wakeups



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

thread 1 thread 2

enq/dek an/deq
AHBRF--1Z




Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

thread 1 thread 2

enq/de& an/deq
AHBRF--1Z




Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

thread 1 thread 2

enq/de& an/deq
AHBRF--1Z




Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

thread 1

enq/de&
A

B

L®

Z

thread 2

an/deq

L



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

thread 1 thread 2

enq/dek an/deq
ARBRF--1Z

Solution: see [Michael & Scott, PODC'96]
Obstruction-free solution: see [Herlihy et al., ICDCS'03]




Problems with Locks

implicit mapping
lock contention
deadlock

lost wakeups

no composability



Problems with Locks

synchronized(?777) {
val = obj.remove(key);
obj.put(key, f(val));
}

synchronized(777) {
val = objl.remove(key);
obj2.put(key, val);

+



Problems with Locks

implicit mapping
lock contention
deadlock

lost wakeups

no composability
priority inversion
no robustness



What?



atomic {
val = objl.remove(key);
obj2.put (key, val);

+

Make simple things easy



void enqueue(element) {
atomic {
Node newNode = new Node(element) ;
newNode.next = head;
head.prev = newNode;
head = newNode;

Make simple things easy



atomic blocks = transactions



Transactional Memory

pi Tqt

p> Ty ——

P3 lEX

t-objects —

TM implementation



Transactional Memory

write )
credit




Transactional Memory

commit
P1 T1 @
abort
p2 T2 O
Ps
write )
debit credit




TM Implementations

C/C++ and Java compilers (Intel, IBM, Tanger, DeuceSTM)
Libraries (SwissTM, TinySTM, TL2, ...)

Hardware (prototypes)



Model

TM = shared object with operations:

m texec(x.op,) — execute operation op on t-object x
within transaction Ty; returns the value returned
by op, or a special value A, when Ty is aborted;

m tryC(Ty) — try to commit Ty; returns Cx (commit
successful) or Ay (commit failed = T, aborted);

m tryA(Ty) — abort Ty; always returns Ag.

A TM object is wait-free,
but not atomic (no sequential spec)



Model

m T-objects are inside the TM object;
=> can only be accessed via operation texec.

m When a process p; executes an operation
texec(x.opy), tryC(Ty), or tryA(Ty),
we say that transaction Ty executes, respectively,
x.opy, tryC, and tryA.

m For simplicity of the lecture: only read and write
operations (like registers).



Terminology

m T, starts when it invokes its first operation.
m T, commits when it receives Cy from tryC.
m T aborts when it receives A, from any TM operation.

m T is forceably aborted when it receives A from
operation texec or tryC.



Real-Time Order

Py T commit 3\

b
P> T, —o > history
Ps T3 —

J

T, and T3 are concurrent
(T, and T3 as well)

T, precedes T,



Safety ofa TM

commit
°

T3I

abort




Safety ofa TM

commit
T1 f ®
T3 f
abort
T2 f O
“looks like”
® T3I O Tzl



Opacity

Correctness (safety) of a TM = opacity; intuitively:

Every transaction appears as if it was executed
instantaneously at some point during its lifespan
(similar to atomicity / linearizability)

No transaction ever observes an inconsistent state
of the system

Opacity is like strict serializability, but applied to all transactions,
not only the committed ones.



How?



Bogus TM

upon texec(x.op,)
return A

end

upon tryC(Ty)
return Ay
end

upon tryA(Ty)
return A
end

correct (wait-free, ensures opacity), but useless...
= need to specify progress properties



Progress property: when a transaction can be
forceably aborted?



Examples Progress Properties

Perfect progressiveness — no transaction is ever
forceably aborted.



Examples Progress Properties

| Perfect progressiveness — no transaction is ever
forceably aborted.

Strong progressiveness — if a group of concurrent
transactions conflicts on at most one t-object, then
at least one of those transactions is not forceably
aborted.



Strong Progressiveness — Example 1

Tyt | commit



Strong Progressiveness — Example 2

Tyt 2 | commit

I commit



Strong Progressiveness — Example 3

commit or commit or commit



Examples Progress Properties

| Perfect progressiveness — no transaction is ever
forceably aborted.

Strong progressiveness — if a group of concurrent
transactions conflicts on at most one t-object, then
at least one of those transactions is not forceably
aborted.

TM obstruction-freedom - if a transaction Ty
executes alone (i.e., with all other transactions
suspended or crashed during the execution of Tj),
then Ty is not forceably aborted.



TM Obstruction-Freedom

T ———— commit



Impossibility

Theorem: There is no TM implementation that ensures
perfect progressiveness in an asynchronous system in
which processes can crash.

Proof sketch: ...



Proof (Intuition)

pi Tqi | commit

read — 0 write 1

atomic {
v := A.read();
A.write(v + 1);

}



Proof (Intuition)

read — 0

P T

%)



Proof (Intuition)

read — 0

P T

read — O; write 1
p2 T2 f o
commit




Proof (Intuition)

read — 0 write 1
p.l T,I ............................. - 0
abort
read — O; write 1
p> Ty °

commit

p, cannot distinguish this execution from a one in which
p, crashes just after T; reads 0 = T, cannot wait for T,
and must eventually commit



Proof (Intuition)

read — 0

pr Th— 8

read — O; write 1
p2 T2 f o
commit

p, cannot distinguish this execution from a one in which
p, crashes just after T; reads 0 = T, cannot wait for T,
and must eventually commit



Proof (Intuition)

read — 0 write 1

read — O; write 1

p2 T2 f o
commit

If T, and T, both read 0, write 1 and commit,

then opacity is violated
(one of them should read 1 and write 2,

since each increments the value of A)

abort



Lock-based TM



Lock-Based TM - Simple Algorithm

Idea: use (strict) 2-phase locking (see databases)
Implement: t-objects x1, Xy, ...

Every t-object x,,, protected with a lock

(a C&S object C[m])

State of x,, stored in register S[m]

(variables wset and wlog are process-local)

Initially: C[1, ... ] = unlocked, wset = @ at every process



upon x,,.ready or X,,. write(v),
if x,, &€ wset then
if CLm].C&S(unlocked, locked) = locked then
rollback

return A,
end

wset := wset U {xn }

wlog[m] := S[m].read
end
if op = read then return S[m].read
S[m].write(v)

return ok
end



upon tryC(T)
cleanup
return Cy
end

upon tryA(Ty)
rollback
return Ay
end



procedure rollback
for x,, € wset do S[m].write(wlog[m])
cleanup

end

procedure cleanup
for x,, € wset do C[m].C&S(locked, unlocked)

wset ;= @
end



Possible improvement: use read-write locks = single
writer, multiple readers semantics

Even then a (big) problem: readers must write
to memory = cache contention

Solution: invisible reads



Lock-Based TM with Invisible Reads

Uses: C[1, ...] — readable C&S objects,
S[1,...] —registers
(other variables are process-local)

Initially: C[1,...] = unlocked, S[1,...] =(0, 0),
wset = @, rset[1,...] =1



upon Xx,. write(v)
if x,, € wset then

if CLm].C&S(unlocked, locked) = locked then
rollback

return A,
end

wset := wset U {xn }
wlog[m] := S[m].read
end
(vV/, ts) := wlog[m]
S[m].write(v, ts)

return ok
end



upon x,,.ready
(v, ts) :=S[m].read
if x,, € wset then return v
if C[m].read = locked or not validate then
rollback

return Ay
end
if rset[m] = L thenrset[m] =ts

return v
end



procedure validate
form : rset[m] # 1L do
(v, ts) :=S[m].read
if ts # rset[m] or (x,, & wset and
C[m].read = locked) then return false
end

return true
end



upon tryC(T)
if not validate then
rollback

return A
end

for x,,, € wset do
(v, ts) :=S[m].read
S[m].write(v, ts + 1)
end
cleanup

return C;
end



upon tryA(Ty)
rollback

return Ay
end

procedure rollback
for x,, € wset do S[m].write(wlog[m])
cleanup

end

procedure cleanup
for x,, € wset do C[m].C&S(locked, unlocked)
wset := @
form=1,2,...dorset[m] := L

end



Obstruction-free TM



Obstruction-Free TM - Simple Algorithm

Idea: use a global revocable lock
Implements: t-objects x;, x», ...

Uses: C — C&S object, F - fetch&increment object,
S[1,...] —unbounded registers
(other variables are process-local)

Initially: C=1,F=2,5[1] =(0,0,...),slot=1



upon x,,.ready or X,,. write(v)

if slot = 1 then
slot := F.fetch&increment
current ;= C.read
values = S[ current].read
S[slot].write(values)

end

values = S[ slot].read

if op = read then return values[m]

values[m] :=v

S[slot].write(values)

return ok
end



upon tryC(Ty)
s := C.C&S(current, slot)
slot := 1
if s = current then return C;

else return A,
end

upon tryA(Ty)
slot := L
return Ay
end



Possible improvements:

m one C&S and one register per t-object
(finer grained)

E use memory management (+ garbage collector)
instead of infinite arrays

Practical examples: DSTM, NZTM



Transactions @ EFPL:
lpd.epfl.ch



