
Transactional Memory

Michał Kapałka

Concurrent Algorithms 2009



Outline

1 Why?

2 What?

3 How?



Why?



Problem

Hypothesis: implementing wait-free (obstruction-free)
atomic objects efficiently is difficult.

Note: universal construction is sometimes too expensive.

Example: see previous lectures…



Problem

Hypothesis 2: implementing scalable data structures
using locks is also difficult.

Example: …



Problems with Locks

implicit object-lock mapping



Problems with Locks

From the Linux kernel:

/*
* When a locked buffer is visible to the I/O layer
* BH_Launder is set. This means before unlocking
* we must clear BH_Launder,mb on alpha and then
* clear BH_Lock, so no reader can see BH_Launder set
* on an unlocked buffer and then risk to deadlock.
*/



Problems with Locks

implicit mapping
lock contention
deadlock
lost wakeups



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

.

.thread 1

.A .B .… .Z

.thread 2

.enq/deq .enq/deq



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

.

.thread 1

.A .B .… .Z

.thread 2

.enq/deq .enq/deq

.lock



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

.

.thread 1

.A .B .… .Z

.thread 2

.enq/deq .enq/deq

.lock .lock



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

.

.thread 1

.A .B .… .Z

.thread 2

.enq/deq .enq/deq

.L .L .L



Sadistic Homework (of M. Herlihy)

Implement a double-ended queue:

.

.thread 1

.A .B .… .Z

.thread 2

.enq/deq .enq/deq

Solution: see [Michael & Scott, PODC’96]
Obstruction-free solution: see [Herlihy et al., ICDCS’03]



Problems with Locks

implicit mapping
lock contention
deadlock
lost wakeups
no composability



Problems with Locks

synchronized(???) {
val = obj.remove(key);
obj.put(key, f(val));

}

synchronized(???) {
val = obj1.remove(key);
obj2.put(key, val);

}



Problems with Locks

implicit mapping
lock contention
deadlock
lost wakeups
no composability
priority inversion
no robustness
…



What?



atomic {
val = obj1.remove(key);
obj2.put(key, val);

}

Make simple things easy



void enqueue(element) {
atomic {

Node newNode = new Node(element);
newNode.next = head;
head.prev = newNode;
head = newNode;

}
}

Make simple things easy



atomic blocks = transactions



Transactional Memory

..p1

.p2

.p3

.T1

.T1
.commit

.T2

.T2
.abort

.T3

.TM implementation

.A .B.t-objects

.write
.inc .debit .credit



Transactional Memory

..p1

.p2

.p3

.T1

.T1
.commit

.T2

.T2
.abort

.T3

.TM implementation

.A .B

.t-objects

.write
.inc .debit .credit



Transactional Memory

..p1

.p2

.p3

.T1

.T1
.commit

.T2

.T2
.abort

.T3

.TM implementation

.A .B

.t-objects

.write
.inc .debit .credit



TM Implementations

C/C++ and Java compilers (Intel, IBM, Tanger, DeuceSTM)

Libraries (SwissTM, TinySTM, TL2, …)

Hardware (prototypes)



Model

TM = shared object with operations:
texec(x�opk) – execute operation op on t-object x
within transaction Tk; returns the value returned
by op, or a special value Ak when Tk is aborted;

tryC(Tk) – try to commit Tk; returns Ck (commit
successful) or Ak (commit failed⇒ Tk aborted);

tryA(Tk) – abort Tk; always returns Ak.

A TM object is wait-free,
but not atomic (no sequential spec)



Model

T-objects are inside the TM object;
⇒ can only be accessed via operation texec.

When a process pi executes an operation
texec(x�opk), tryC(Tk), or tryA(Tk),
we say that transaction Tk executes, respectively,
x�opk, tryC, and tryA.

For simplicity of the lecture: only read and write
operations (like registers).



Terminology

Tk startswhen it invokes its first operation.

Tk commitswhen it receives Ck from tryC.

Tk abortswhen it receives Ak from any TM operation.

Tk is forceably abortedwhen it receives Ak from
operation texec or tryC.



Real-Time Order

..p1

.p2

.p3

.T1
.commit

.T2
.abort

.T3

.history

T1 and T3 are concurrent
(T2 and T3 as well)

T1 precedes T2



Safety of a TM

..T1
.commit

.T2
.abort

.T3 .…



Safety of a TM

..T1
.commit

.T2
.abort

.T3 .…

“looks like”

..T1 .T3 .T2



Opacity

Correctness (safety) of a TM = opacity; intuitively:
1 Every transaction appears as if it was executed

instantaneously at some point during its lifespan
(similar to atomicity / linearizability)

2 No transaction ever observes an inconsistent state
of the system

Opacity is like strict serializability, but applied to all transactions,
not only the committed ones.



How?



Bogus TM

upon texec(x�opk)
return Ak

end

upon tryC(Tk)
return Ak

end

upon tryA(Tk)
return Ak

end

correct (wait-free, ensures opacity), but useless…
⇒ need to specify progress properties



Progress property: when a transaction can be
forceably aborted?



Examples Progress Properties

1 Perfect progressiveness – no transaction is ever
forceably aborted.

2 Strong progressiveness – if a group of concurrent
transactions conflicts on at most one t-object, then
at least one of those transactions is not forceably
aborted.



Examples Progress Properties

1 Perfect progressiveness – no transaction is ever
forceably aborted.

2 Strong progressiveness – if a group of concurrent
transactions conflicts on at most one t-object, then
at least one of those transactions is not forceably
aborted.



Strong Progressiveness – Example 1

..T1 .commit



Strong Progressiveness – Example 2

..T1 .commit

.A

.T2 .commit

.B



Strong Progressiveness – Example 3

.

.A .B

.C.T1

.T2

.T3

.write

commit or commit or commit



Examples Progress Properties

1 Perfect progressiveness – no transaction is ever
forceably aborted.

2 Strong progressiveness – if a group of concurrent
transactions conflicts on at most one t-object, then
at least one of those transactions is not forceably
aborted.

3 TM obstruction-freedom – if a transaction Tk
executes alone (i.e., with all other transactions
suspended or crashed during the execution of Tk),
then Tk is not forceably aborted.



TM Obstruction-Freedom

..T1

.T2

.T3

.commit

.A



Impossibility

Theorem: There is no TM implementation that ensures
perfect progressiveness in an asynchronous system in
which processes can crash.

Proof sketch: …



Proof (Intuition)

..p1 .T1 .commit

.A

.read→ 0 .write 1

atomic {
v := A.read();
A.write(v + 1);

}



Proof (Intuition)

..p1

.p2

.T1
.read→ 0

.T2
.read→ 0; write 1

.commit

.write 1

.abort
.A



Proof (Intuition)

..p1

.p2

.T1
.read→ 0

.T2
.read→ 0; write 1

.commit

.write 1

.abort
.A



Proof (Intuition)

..p1

.p2

.T1
.read→ 0

.T2
.read→ 0; write 1

.commit

.write 1

.abort

.A

p2 cannot distinguish this execution from a one in which
p1 crashes just after T1 reads 0⇒ T2 cannot wait for T1
and must eventually commit



Proof (Intuition)

..p1

.p2

.T1
.read→ 0

.T2
.read→ 0; write 1

.commit

.write 1

.abort

.A

p2 cannot distinguish this execution from a one in which
p1 crashes just after T1 reads 0⇒ T2 cannot wait for T1
and must eventually commit



Proof (Intuition)

..p1

.p2

.T1
.read→ 0

.T2
.read→ 0; write 1

.commit

.write 1

.abort

.A

If T1 and T2 both read 0, write 1 and commit,
then opacity is violated
(one of them should read 1 and write 2,
since each increments the value of A)



Lock-based TM



Lock-Based TM – Simple Algorithm

Idea: use (strict) 2-phase locking (see databases)

Implement: t-objects x1, x2, …

Every t-object xm protected with a lock
(a C&S object C[m])
State of xm stored in register S[m]
(variableswset andwlog are process-local)

Initially: C[1� � � � ] = unlocked,wset =" at every process



upon xm�readk or xm�write(v)k
if xm �∈ wset then

if C[m]�C�S(unlocked� locked) = locked then
rollback
return Ak

end
wset �= wset ∪ �xm�
wlog[m] �= S[m]�read

end
if op = read then return S[m]�read
S[m]�write(v)
return ok

end



upon tryC(Tk)
cleanup
return Ck

end

upon tryA(Tk)
rollback
return Ak

end



procedure rollback
for xm ∈ wset do S[m]�write(wlog[m])
cleanup

end

procedure cleanup
for xm ∈ wset do C[m]�C�S(locked�unlocked)
wset �="

end



Possible improvement: use read-write locks⇒ single
writer, multiple readers semantics

Even then a (big) problem: readers mustwrite
to memory⇒ cache contention

Solution: invisible reads



Lock-Based TM with Invisible Reads

Uses: C[1� � � �] – readable C&S objects,
S[1� � � �] – registers
(other variables are process-local)

Initially: C[1� � � �] = unlocked, S[1� � � �] = (0� 0),
wset =", rset[1� � � �] = ⊥



upon xm�write(v)k
if xm �∈ wset then

if C[m]�C�S(unlocked� locked) = locked then
rollback
return Ak

end
wset �= wset ∪ �xm�
wlog[m] �= S[m]�read

end
(v′� ts) �= wlog[m]
S[m]�write(v� ts)
return ok

end



upon xm�readk
(v� ts) �= S[m]�read
if xm ∈ wset then return v
if C[m]�read = locked or not validate then

rollback
return Ak

end
if rset[m] = ⊥ then rset[m] = ts
return v

end



procedure validate
form � rset[m] 6= ⊥ do

(v� ts) �= S[m]�read
if ts 6= rset[m] or (xm �∈ wset and
C[m]�read = locked) then return false

end
return true

end



upon tryC(Tk)
if not validate then

rollback
return Ak

end
for xm ∈ wset do

(v� ts) �= S[m]�read
S[m]�write(v� ts + 1)

end
cleanup
return Ck

end



upon tryA(Tk)
rollback
return Ak

end

procedure rollback
for xm ∈ wset do S[m]�write(wlog[m])
cleanup

end

procedure cleanup
for xm ∈ wset do C[m]�C�S(locked�unlocked)
wset �="
form = 1� 2� � � � do rset[m] �= ⊥

end



Obstruction-free TM



Obstruction-Free TM – Simple Algorithm

Idea: use a global revocable lock

Implements: t-objects x1, x2, …

Uses: C – C&S object, F – fetch&increment object,
S[1� � � �] – unbounded registers
(other variables are process-local)

Initially: C = 1, F = 2, S[1] = (0� 0� � � �), slot = ⊥



upon xm�readk or xm�write(v)
if slot = ⊥ then

slot �= F�fetch�increment
current �= C�read
values = S[current]�read
S[slot]�write(values)

end
values = S[slot]�read
if op = read then return values[m]
values[m] �= v
S[slot]�write(values)
return ok

end



upon tryC(Tk)
s �= C�C�S(current� slot)
slot �= ⊥
if s = current then return Ck
else return Ak

end

upon tryA(Tk)
slot �= ⊥
return Ak

end



Possible improvements:
one C&S and one register per t-object
(finer grained)
use memory management (+ garbage collector)
instead of infinite arrays

Practical examples: DSTM, NZTM



Transactions @ EFPL:
lpd.epfl.ch


