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Abstract In this chapter we give a formal overview of liveness properties of trans-
actional memory (TM) systems. Unlike safety properties, which require some ’bad’
events not to occur, liveness properties require some ’good’ events to eventually oc-
cur. Usually, liveness properties of shared memory systems require some operations
to eventually return a response (terminate). However, in the context of TM systems
operation termination is not enough to ensure meaningful progress. It is necessary
to require some transactions to eventually commit. In this chapter we give precise
definitions of liveness properties and what it means for a TM systems to satisfy a
liveness property. Using the defined formal framework we give some impossibility
results. We show that it is impossible to guarantee both local progress, the strongest
TM liveness property that requires every correct transaction to eventually commit,
and common TM safety properties such as strict serializability or opacity in a fault
prone system.

1 Introduction

Transactional memory (TM) [13, 16, 26] is a concurrency control paradigm that
aims at simplifying concurrent programming. It provides non-expert programmers
with an abstraction, called transaction, such that transactions concurrently execute
atomic pieces of sequential code of some application. Each transaction is executed
by some process (thread) and contains transactional operations. A transactional op-
eration is either an access (read or write) to a transactional variable (data item) or a
request to commit the transaction. If the transaction is committed, then the effects
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of its operations become visible to subsequent transactions, and if it is aborted, then
the effects are rolled back. Transactions are viewed as a simple way to write concur-
rent programs and hence leverage multicore architectures. Not surprisingly, a large
body of work has been dedicated to implementing the paradigm and reducing its
overheads.

Most of the work on the theory of transactional memory focused solely on safety
(consistency), i.e., on what TMs should not do. Indeed, correctness conditions for
TMs have been proposed in [11, 18, 5, 6, 8] and programming language level se-
mantics of specific classes of TM implementations have been determined, e.g.,
in [1, 19, 22, 23]. Most those efforts, however, focused solely on safety, i.e., on
what TMs should not do. Clearly, a TM that ensures only a safety property can
trivially be implemented by aborting all operations. To be meaningful, a TM has
to ensure that some transactions should eventually commit which is captured by a
liveness property [2].

Generally, in shared-memory systems, a liveness property states when a certain
process that invokes an operation on a shared object is guaranteed to return from
this operation, i.e. makes progress [17]. One of the widely studied such property is
wait-freedom [14]. It ensures, intuitively, that every process invoking an operation
on a shared object eventually returns from this operation, even if other processes
crash. It is the ultimate liveness property in concurrent computing as it ensures that
every process makes progress and forms the consensus number hierarchy of shared
objects [14]. However, requiring TM systems to ensure only wait-freedom would,
however, not be enough to ensure any meaningful progress: processes of which
all transactions are aborted might be satisfying wait-freedom (since every trans-
actional operation returns a response) but would not be making any real progress.
To ensure meaningful progress, a TM liveness property should require transaction
commitment, beyond operation termination. In other words, it should require cer-
tain processes to eventually commit some of their transactions. One would expect
from a TM that every process that keeps executing transactions eventually commits
some of them—a property that we call local progress and that is similar in spirit to
wait-freedom. Not satisfying this property means that some processes might never
commit any of their transactions starting from some point in time.

A TM implementation that protects every transaction using a single fair global
lock could ensure local progress: such a TM would execute all transactions sequen-
tially, thus avoiding conflicts between transactions. Yet, such a TM would force
processes to wait for each other, preventing them from progressing independently. A
process that acquires a global lock and gets suspended for a long time, or that enters
an infinite loop and keeps running forever without releasing the lock, would pre-
vent all other processes from making any progress. This would go against the very
essence of wait-freedom. Hence, to be really meaningful a TM liveness property
should enforce some ”independent” progress.

The classical way of modeling shared-memory systems in which processes can
make progress independently, i.e., without waiting for each other, is to consider
asynchronous systems in which processes can be arbitrarily slow and can fail by
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p1 T1

p2 T2
x.read→ 0

x.write(1)
commit

x.read→ 0 x.write(1)
abort

Fig. 1 An illustration of the difficulty of ensuring local progress. The scenario can be repeated
infinitely many times preventing transaction T1 from ever committing.

crashing. A TM implementation that is resilient to crashes enables the progress of a
process even if other processes are suspended for a long time or crashed.

However, resiliency against crashes is not enough. Consider a transaction that
holds a global lock which does not crash and never invokes a commit request. Such
a transaction would prevent all other transactions from making progress. Therefore,
one should also ensure progress in the face of parasitic processes—those that keep
executing transactional operations without ever attempting to commit. These model
long-running processes whose duration cannot be anticipated by the system, e.g.,
because of an infinite loop.

To illustrate the underlying challenges, consider the following example, shown
in Figure 1. Two processes, p1 and p2, execute transactions T1 and T2, respectively.
Process p1 reads value 0 from a shared variable x and then gets suspended for a
long time. Then, process p2 also reads value 0 from x, writes value 1 to x, and
attempts to commit. Because of asynchrony, the processes can be arbitrarily delayed.
Hence, the TM does not know whether p1 has crashed or is just very slow, and
so, in order to ensure the progress of process p2, the TM might eventually allow
process p2 to commit T2. But then, if process p1 writes value 1 to x and attempts to
commit T1, the TM cannot allow process p1 to commit, as this would violate safety.
A similar situation can occur in the case of parasitic processes, say if p1 keeps
repeatedly reading from variable x. If the maximum length of a transaction is not
known, the TM cannot say whether p1 is parasitic or not, and thus may eventually
allow process p2 to commit T2, forcing process p1 to abort T1 later.

We consider a set-based definition of liveness, i.e. we consider a TM-liveness
property L as a set of fair histories, so that a TM implementation ensures the prop-
erty if every fair history of the implementation belongs to L. A history is basically
a sequence of invocations and responses of operations executed within transactions,
and a fair history is a history augmented with crash events. The focus on fair histo-
ries is necessary because a TM-liveness property should not require progress from
processes which do not take any steps in an execution, i.e. crash in that execution.
So, to distinguish crashed processes from processes that take infinitely many steps
without returning a response of a transactional operation, we augment histories with
crash events. Like fairness properties are defined in [27], we define a TM-liveness
property as a weakening of local progress, which has the strongest progress require-
ment among TM-liveness properties.

Since safety properties state that some events should not occur and liveness prop-
erties state that some events should eventually occur, safety and liveness require-
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ments might contradict each other. A safety requirement may make it impossible
to guarantee a liveness requirement and vice versa. The question is, under what
conditions which safety and liveness properties are impossible to guarantee? We
address this question in the TM context by proving an impossibility result which
states that no TM implementation can ensure both local progress and opacity in any
fault-prone system, i.e. in a system in which any number of processes can crash or
be parasitic. Opacity is the safety property ensured by most TM implementations. It
states that every transaction (even aborted or live) observes a consistent state of the
system. Local progress is a TM-liveness property, highlighted above, which states
that every correct process, i.e. a process which is not parasitic and does not crash,
eventually commits its transactions. In fact, we prove a more general result stating
that no TM implementation can ensure any safety property that is at least as strong
as strict serializability together with the progress of at least two correct processes
and any correct process that runs alone.

2 Preliminaries

2.1 System model

We consider a system of n asynchronous processes p1, . . . , pn that communicate with
each other by executing operations on shared objects (which represent the shared
memory, e.g., provided in hardware). A shared object is a higher-level abstraction
provided to processes, and implemented typically in software using a set of base
objects. Base objects are shared objects which are accessed via atomic operations
called primitives.

For instance, if base objects are memory locations with basic operations such as
read, write, and compare-and-swap, then shared objects could be shared data struc-
tures such as linked lists or hash tables. When a process pi invokes an operation op
on a shared object O, then pi follows the implementation of O, possibly accessing
some number of base objects and executing local computations, until pi is returned
the result of op. We assume that processes are sequential; that is, whenever a pro-
cess pi invokes an operation op on any shared object, pi does not invoke another
operation on any shared object until pi returns from op. Invocations and responses
on shared objects operations are called (invocation and response) events.

2.2 Histories and executions

Let I be an implementation of a shared object O. A configuration C of I determines
the current state of each process and of each base object used in I. The initial con-
figuration C0 of I is a configuration when all processes and all base objects are at
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their initial states. A step s (executed by some process pi) of I can be one of the
following: (i) an invocation event of some operation on O, (ii) a response event of
some operation from O, (iii) a single primitive operation and one or more computa-
tions local to pi. An execution α = C0 · s1 ·C1 · s2 ·C2 . . . of I is a (finite or infinite)
sequence of alternating configurations and steps of I such that: (i) C0 is the initial
configuration, and for any Ci, si, and Ci+1 in α the execution of step si by I at con-
figuration Ci results in the new configuration Ci+1. We define a projection α|pk of
an execution α on a process pk as the longest subsequence of α consisting only of
steps of pk.

The order in which processes take steps is determined by a scheduler. Processes
and TM implementations have no control over a scheduler. The scheduler decides
which process is allowed to execute a step at a given point in time. These decisions
form a schedule which is a finite or an infinite sequence of process identifiers.

The longest subsequence of an execution α of I consisting only of invocation and
response events is called a history of I, and is denoted by Hα . We define a projection
H|pk of a history H on a process pk as the longest subsequence of H consisting of
invocation and response events associated with pk.

2.3 Transactional Memory

Transactional memory allows processes to execute pieces of sequential code within
transactions. The code contains accesses to transactional variables (t-variables
for short) which represent shared data. For presentation simplicity, we focus on
t-variables that support read and write operations. Let K be the set of process
identifiers, P = {pk|k ∈ K} be the set of processes, and let X be the set of t-
variables. Each t-variable can take values from a set V . To write a value v to a
t-variable x process pk invokes x.writek(v) and receives as a response either ok, if
the write was successful, or an abort event Ak if the transaction has to be aborted.
To read a value from a t-variable x process pk invokes x.readk and receives as a
response either the value of t-variable v or an abort event Ak if the transaction
has to be aborted. To commit a transaction process pk invokes a commit request
tryCk and receives as a response either a commit event Ck or an abort event Ak.
Let Invk = {x.writek(v)|x ∈ X and v ∈ V}∪ {x.readk|x ∈ X}∪ {tryCk} be the set
of invocation events of process pk and Resk = {vk|v ∈V}∪{okk,Ak,Ck} be the set
of response events of process pk. Also, let Inv = ∪k∈KInvk and Res = ∪k∈KResk.
Usually TM implementations provide additional transactional operations such as
the request to start a transaction, the request to create a new t-variable (in the case
of dynamic TMs), and a request to abort a transaction. Our theoretical results hold
for TM implementations that provide these operations. However, for simplicity, we
assume TM implementations that provide only operations to read/write a t-variable
and commit a transaction.

Denote by Σk a set such that Σk = {x.writek(v) · okk|x.writek(v) ∈ Invk} ∪
{x.readk() ·vk|x.readk() ∈ Invk and vk ∈ Resk}∪{tryCk ·Ck}∪{inv ·Ak|inv ∈ Invk},
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i.e. Σk contains concatenations of invocations and their possible responses associ-
ated with process pk. Also, let Σ ∞

k be the set of all finite and infinite sequences over
Σk. A history H of a TM implementation is well-formed if for every pk ∈ P either
H|pk ∈ Σ ∞

k or H|pk ∈ Σ ∗k · Invk holds, i.e. H|pk is a sequence of alternating invo-
cation and response events. In the rest of the chapter we assume only well-formed
histories.

Given projection H|pk of history H of some TM implementation, a transaction
of pk in H is a subsequence T = e1 · . . . · em of H|pk such that:

• either e1 is the first event in H|pk, or the event e′ which precedes e1 in H|pk is
either Ak or Ck, and
• em is either Ak or Ck or the last event in H|pk, and
• no event in T , except em, is Ak or Ck.

Transaction T is committed (aborted) if the last event in T is a commit (abort)
event. Given transactions T1 and T2 in history H, we say that T1 precedes T2 in
H, denoted by T1 <H T2, if T1 is committing or aborting and the last event of T1
precedes the first event of T2 in H. Transactions T1 and T2 are concurrent if T1
does not precede T2 and T2 does not precede T1. History H is sequential if no two
transactions in H are concurrent to each other.

Processes communicate with each other only through a TM implementation by
invoking concurrently requests (read, write, and commit requests) and receiving
corresponding responses from the implementation. Processes send commit requests
to the TM implementation that decides which transactions should be committed or
aborted. To reduce contention between transactions, a TM implementation may use
a logically separate module called a contention manager. A contention manager can
force the TM implementation to abort or delay some transactions. In this work we
consider a contention manager as an integral part of a TM implementation. That is,
all the results of the paper apply to the entire TM, including the contention manager.

2.4 Process Failures

Let α be an infinite execution. Process pk crashes in α if α|pk is finite. That is, a
process crashes in an infinite execution if it stops taking steps in the execution.

Intuitively, a parasitic process is a process that keeps executing transactional op-
erations but, from some point in time, never attempts to commit (by invoking opera-
tion tryC) when given a chance to do so. Note that if starting from some moment in
time every transaction executed by the process is prematurely aborted, i.e. aborted
before the process invokes a commit request, in general, we cannot tell whether
the process intended to eventually invoke a commit request or not. Therefore, we
consider such processes as not parasitic.

Let α be an infinite execution. Process pk is parasitic in α , if there is a suffix α ′

of α such that: (i) pk executes infinitely many transactional operations in α ′, (ii) α ′

does not contain Ak events, and (iii) α ′ does not contain tryCk requests.
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Process pk is correct in an infinite execution α if pk is not parasitic in α and does
not crash in α .

We define a crash-prone system (respectively, parasitic-prone system) Sys to be
a system of processes in which any process can crash (respectively, be parasitic).
A fault-prone system Sys is a system which is crash-prone or parasitic-prone. Note
that a fault-prone system can have both crashed and parasitic processes.

2.5 Safety properties of TM

Intuitively a safety property of TM implementations should capture the fact that all
events within a transaction appear to other transactions as if they occur instanta-
neously. If a transaction is committed, then all the changes made by write opera-
tions within the transaction are made visible to other transactions; otherwise all the
changes are rolled back. We consider two safety properties of TM implementations:
strict serializability and opacity. Intuitively, strict serializability requires every com-
mitted transaction to observe a consistent state of the system [24], while opacity
requires every transaction (even aborted or unfinished) to observe a consistent state
of the system [12].

We say that history H is equivalent to history H ′ if for every process pk ∈ P
we have H|pk = H ′|pk. A transaction T in history H is commit-pending if T ends
with a commit request tryC. A transaction T in history H is live if T is not commit-
pending, aborted, or committed. We obtain a completion of a finite history H by
aborting every live transaction and by committing or aborting every commit-pending
transaction. Formally a completion comp(H) of a history H is a history derived from
H by appending the following events:

• for every live transaction T (executed by pk) we append tryCk ·Ak

• for every commit pending transaction T (executed by pk) we append either Ck

or Ak.

If comp(H) = H, then H is a complete history. We say that a history H ′ pre-
serves the real time order of a history H if for any two transactions T1 and T2 in
H if T1 <H T2, then T1 <H ′ T2. Let Hs be a complete sequential history and Tj be a
transaction in H. Denote by visible(Tj) the longest subsequence of Hs such that for
every transaction Ti in the subsequence, either j = i or Ti <Hs Tj. Transaction Tj is
legal in Hs if for every t-variable x ∈ X history visible(Tj) respects the sequential
specification of x, i.e. for every transaction Ti in visible(Tj) and every response event
vk in Ti, v is the value of the previous write to x invocation event within a commit-
ting transaction in visible(Tj) or v is the initial value of x if there are no write to x
invocation events within any committing transaction in visible(Tj) before vk.

A finite history H is opaque1 if there exists a sequential history Hs equivalent to
comp(H), such that Hs preserves the real-time order of comp(H), and every transac-

1 Since the way we define opacity is not prefix-closed it is not exactly a safety property. However,
for the sake of simplicity, we do not consider a prefix-closed definition of opacity since in terms of
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tion in Hs is legal. A finite history H is strictly serializable if there exists a sequential
history Hs equivalent to H ′, where H ′ is obtained from H by removing every aborted
and live transaction and some of the commit-pending transactions and appending to
H a commit event for every commit-pending transaction which is not removed, such
that Hs preserves the real-time order of H, and every transaction in Hs is legal. A
TM implementation I ensures opacity (respectively, strict serializability) if for every
execution α of I, Hα is opaque (respectively, strictly serializable).

For example, the history in Figure 1 is opaque, while the history in Figure 2 is
not opaque but strictly serializable.

p1
r→ 0

p2

w(1)
C

r→ 1
A

Fig. 2 A history which is not opaque but strictly serializable. All operations access the same t-
variable. For simplicity, r→ v denotes both the invocation of a read operation and its response v,
w(v) denotes both the invocation of a write operation (with value v) and its response ok, C denotes
both the invocation of a commit request and a commit event, A denotes both the invocation of a
commit request and an abort event

3 Liveness of a TM

3.1 TM-liveness Properties

Basically, a TM-liveness property states whether some process pk should make
progress in some execution α . Clearly, progress cannot be required for crashed or
parasitic processes: these processes have executions with a finite number of tryC
operation invocations. Thus, we should require progress only for correct processes
(which basically captures the fairness requirement). Like a fairness property is de-
fined in [27], we define a TM-liveness property as a weakening of the strongest
TM-liveness property. The strongest TM-liveness property that we can require of a
TM system is to ensure that every correct process makes progress.

Next we introduce the notion of a fair history in order to distinguish a process that
crashes from a process that takes infinitely many steps without returning a response
when defining a liveness property. We derive a fair history Fα by augmenting a
history Hα , of some execution α , with crash events. Formally, we derive a fair
history Fα in the following way: for every process pk that crashes in α we insert a
crash event crashk between the last event e of pk and the event that follows after e

TM implementations a prefix-closed definition is equivalent to a non-prefix-closed one (i.e. every
TM implementation which ensures non-prefix-closed also ensure a prefix-closed one).
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in Hα . A process pk is correct in a fair history Fα , if pk is correct in α . Herein, if
α is clear from the context, we omit α from the notation of a (fair) history Hα and
use just H instead. A process pk makes progress in a fair history F , if F contains
infinitely many commit events Ck.

A fair history F ensures local progress if every correct process makes progress in
F , or F does not have any correct processes. Let Llocal denote the set of all possible
fair histories that satisfy local progress. Then, a TM-liveness property L is a set of
fair histories such that Llocal ⊆ L. Given two TM-liveness properties L1 and L2, we
say that L1 is weaker (stronger) than L2 if L2⊆ L1 (L1⊆ L2). A fair history F ensures
a TM-liveness property L iff H ∈ L. A TM implementation I ensures a TM-liveness
property L if for every execution α of I its corresponding fair history Fα ensures L.

3.2 Examples of TM-liveness Properties

3.2.1 Local Progress

Roughly speaking, a TM implementation I ensures local progress if I guarantees
that every correct process in a fair history makes progress, i.e. has infinitely many
of its transactions committed. Note that local progress requirements also imply the
requirement of wait-freedom of individual transactional operations. Therefore, ev-
ery TM-implementation that ensures local progress also ensures wait-freedom [14],
which requires each individual transactional operation to receive a response. How-
ever, a TM-implementation might ensure wait-freedom without ensuring local progress,
e.g. when all transactional operations receive a response each transaction is aborted.

For example, Figure 3 shows an infinite history which ensures local progress in a
system with two processes and one t-variable. Both processes make progress in the
history.

p1
r→ 0

w(1)
C

p2
r→ 0

w(1)
A

r→ 1

w(0)
C

r→ 1

w(0)
A

r→ 0

w(1)
C

r→ 0

w(1)
A

Fig. 3 An infinite fair history with two processes and one t-variable that ensures local progress.
Each process executes an infinite number of transactions that either read value 0 and write value 1
or read value 1 and write value 0.
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3.2.2 Global Progress

A TM implementation I ensures global progress if I guarantees that some correct
process in a fair history makes progress, i.e. has infinitely many of its transactions
committed. Formally, we define global progress, as a TM-liveness property Lglobal
such that a fair history F belongs to Lglobal iff at least one correct process in F
makes progress in F , or F does not have correct processes. Note that every TM-
implementation that ensures global progress also ensures lock-freedom [14], which
requires some individual transactional operation to receive a response.

p1
r→ 0

w(1)
C

p2
r→ 0

w(1)
A

r→ 1

w(0)
C

r→ 1

w(0)
A

r→ 0

w(1)
C

r→ 0

w(1)
A

Fig. 4 An infinite fair history with two processes and one t-variable that ensures global progress.
Processes execute an infinite number of transactions that either read value 0 and write value 1 or
read value 1 and write value 0.

Figure 4 shows an infinite fair history which ensures global progress in a system
of two processes and one t-variable. Both of the processes are correct in the history.
However, only process p1 makes progress in the history.

3.2.3 Solo Progress

A TM implementation I ensures solo progress if I guarantees that every correct
process which runs alone in a fair history makes progress, i.e. has infinitely many of
its transactions committed. A correct process runs alone if starting from some point
in time it is the only process that takes steps in an execution. Formally, a process pk
runs alone in an infinite fair history F if pk is correct in F and all other processes
crash in F (i.e. stop taking steps in the corresponding execution). We define solo
progress, as a TM-liveness property Lsolo such that a fair history F belongs to Lsolo
iff a process that runs alone in F makes progress in H, or F does not have a process
that runs alone in F . Note that every TM-implementation that ensures solo progress
also ensures obstruction-freedom [15], which requires each individual transactional
operation to receive a response if the operation runs alone.

Figure 5 depicts an infinite fair history which ensures solo progress in a system
with three processes and one t-variable. Processes p1 and p2 crash, and process p3
runs alone and makes progress.

Note that according to the definition of solo progress, a transaction which does
not encounter step contention with other transactions, i.e. the transaction runs alone,
is allowed to abort. This is because solo progress is a liveness property, and there-
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p1
r→ 0 crash

p2
w(1)

C
r→ 1 crash

p3
r→ 1

w(0)
A

r→ 0

w(1)
C

r→ 1

w(0)
C

Fig. 5 An infinite fair history with three processes and one t-variable that ensures solo progress.
Process p1 starts a transaction by invoking a read operations, but then it crashes. Process p2 ex-
ecutes two transactions, but it crashes during the execution of the second transaction. Process p3
executes an infinite number of transactions that either read value 0 and write value 1 or read value
1 and write value 0.

fore it should allow any possible finite fair history (by the definition of a liveness
property [2, 25]). If we change the definition of solo progress so that the new defini-
tion requires every transaction which runs alone to commit, then the resulting new
definition would not be a liveness property.

Obstruction-free TM implementations [12, 15] ensure solo progress in systems
that are not parasitic-prone. Lock-based TM implementations, such as TinySTM [9]
and SwissTM [7], ensure solo progress in systems that are not crash-prone. How-
ever, lock-based TMs that use lazy acquire, such as TL2 [4], ensure solo progress in
systems that are not crash-prone.

Using the same formal framework we can define other kinds of TM-liveness
properties. For example, in [3] we define a stronger version of solo progress which
requires progress from a process if all other processes either crash or become par-
asitic starting from some point in time. Basically, such TM-liveness property states
that if no other processes attempt to commit their transactions then the only correct
process should make progress.

4 Impossibility of Local Progress

Like in any distributed problem, each execution of a TM implementation can be
thought of as a game between the environment and the implementation. The envi-
ronment consisting of processes and a scheduler decides on inputs (operation invo-
cations) given to the implementation and schedule of steps and the implementation
decides on outputs (responses) returned to the environment. To prove that there is
no TM implementation that ensures both opacity and local progress in a fault prone
system we use the environment as an adversary that acts against the implementation.
The environment wins the game against a TM implementation, if the resulting infi-
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nite fair history violates local progress. To prove the impossibility result, we show a
wining strategy for the environment.

Theorem 1. For every fault-prone system, there does not exist a TM implementation
that ensures both local progress and opacity in that system.

Proof. Assume otherwise, i.e. that there exists a fault-prone system Sys for which
there exists a TM implementation I that ensures local progress and opacity in Sys.
To find a contradiction, we exhibit a winning strategy (Strategies 1 and 2 below) for
the environment resulting in an infinite fair history of I which does not ensure local
progress.

By its definition, a fault-prone system Sys is a system in which any number of
processes can crash or be parasitic. We thus consider two different cases:
Sys is crash-prone.

Consider two processes p1 and p2 and the environment that interacts with I using
Strategy 1.
Strategy 1.

1. Step 1. Process p1 invokes a read operation on t-variable x. Only process p1
takes steps until it receives a response. When p1 receives a response, which is
either v′1 or A1, the strategy goes to Step 2.

2. Step 2. Process p2 invokes a read operation on t-variable x and takes steps until
it receives as a response v′′2 or A2. If the response is A2, then the strategy repeats
Step 2. Otherwise p2 invokes an operation on x, which writes to x either (I)
value v′+1, if p1 received v′1 in Step1, or (II) value v′′+1, if p1 received A1 in
Step1, and takes steps until it receives as a response ok2 or A2. If the response
is A2, then the strategy repeats Step 2. Otherwise p2 invokes tryC2 operation
and takes steps until it receives a response C2 or A2. If the response is A2, the
strategy repeats Step 2. Otherwise the strategy goes to Step 3. Only process p2
takes steps until it receives C2 as a response.

3. Step 3. If p1 received A1 in Step 1, then the strategy goes to Step 1. Otherwise
process p1 resumes taking steps by invoking a write operation on t-variable x
which writes value v′′+1 to x, and then executes until it receives a response. If
the response is A1, then the strategy goes to Step 1. Otherwise p1 invokes tryC1

operation and executes the operation until it receives a response. If the response
is A1, the strategy goes to Step 1. Otherwise the strategy stops.

First, we prove that processes p1 and p2 cannot be parasitic in any execution cor-
responding to Strategy 1. This is because Strategy 1 does not have loops in which
some process invokes infinitely many operations within the same transaction with-
out ever invoking a commit request or receiving an abort event. Note that according
to the strategy, process p1 can crash when transactions of process p2 are repeatedly
aborted in Step 2. Therefore, the strategy does not describe the behavior of processes
in a crash-free system, i.e. system in which no process is allowed to crash.

Next, we show that there exists an infinite fair history F of I corresponding to
some execution of I according to Strategy 1. To do so, we prove that Strategy 1
never terminates. We first prove that the individual transactional operations of I are
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obstruction-free, i.e. we prove that each operation in Strategy 1 eventually returns
a response. If in Strategy 1 some process pk, where k ∈ {1,2}, executing a transac-
tional operation, does not return a response, then pk takes infinitely many steps, and
consequently pk is correct. However, pk does not make progress: a contradiction to
the fact that I ensures local progress. Since individual operations of the implemen-
tation are obstruction-free, then the strategy terminates iff at Step 3 process p1 is
returned C1 by I.

Assume some finite history H f of I corresponding to an execution according to
Strategy 1 such that the last event in H f is C1 (Figure 6). Since I ensures opacity,
there exists a sequential finite history Hs which is equivalent to comp(H f ), preserves
the real-time order of comp(H f ), and every transaction in Hs is legal. Since history
H f has no transactions which are either live or commit-pending, then comp(H f ) =
H f . Hence Hs is equivalent to H f and preserves the real-time order of H f . Since Hs
is a sequential history and preserves the real-time order of H f , then Hs could only
have one of the following forms, where H ′s is a prefix of Hs:

1. Hs =H ′s ·x.read1()·v′1 ·x.write1(v′′+1)·ok1 ·tryC1 ·C1 ·x.read2()·v′′2 ·x.write2(v′+
1) ·ok2 · tryC2 ·C2

2. Hs =H ′s ·x.read2()·v′′2 ·x.write2(v′+1)·ok2 ·tryC2 ·C2 ·x.read1()·v′1 ·x.write1(v′′+
1) ·ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2 is not legal in Hs, because
p2 reads value v′′ from t-variable x the value of which is v′′+1. In the second case,
the last transaction executed by process p1 is not legal in Hs, because p1 reads value
v′ from t-variable x the value of which is v′+1. Thus, H f is not opaque. Since every
history H f of I that ends with a commit event C1 is not opaque and I ensures opacity,
then H f is not a history of I corresponding to Strategy 1. In other words, every
history of I corresponding to some execution according to Strategy 1 is infinite.

p1 T1

p2 T2
x.read→ v′′

x.write(v′+1)
commit

x.read→ v′ x.write(v′′+1)
commit

Fig. 6 A suffix of history H f corresponding to an execution according to Strategy 1 (and Strategy
2) with the last two transactions of p1 and p2.

Consider some infinite execution α of I corresponding to Strategy 1. Since pro-
cess p1 never receives commit event C1 from I, then p1 does not make progress in
the corresponding infinite fair history Fα . Since Sys is crash-prone, then process p1
either crashes in α or does not. Therefore, we focus on the following two cases:

• Process p1 crashes in α . According to the strategy, process p1 crashes in Fα iff
starting from some point in time the strategy executes infinitely many iterations
of Step 2 without going to Step 3. Since no process can be parasitic in any
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execution corresponding to Strategy 1 and p2 takes infinitely many steps in α ,
process p2 is correct in Fα . Since I ensures local progress and p2 is correct in
Fα , then process p2 eventually receives commit event C2 in Step 2, and therefore
the strategy should eventually go to Step 3: a contradiction.

• Process p1 does not crash in α . Since p1 cannot be parasitic in α , then p1 is
correct in Fα . Since I ensures local progress, then p1 makes progress in Fα : a
contradiction.

Sys is parasitic-prone. Consider two processes p1 and p2 and the environment that
interacts with I using the following strategy:
Strategy 2.

1. Step 1. Process p1 invokes a read operation on t-variable x and takes steps until
it receives as a response v′1 or A1. Then process p2 invokes a read operation on
x and takes steps until it receives as a response v′′2 or A2. If the response is A2,
then the strategy repeats Step 1. Otherwise p2 invokes a write operation which
writes to x either (I) value v′+ 1, if p1 received v′1, or (II) value v′′+ 1, if p1
received A1, and then p2 takes steps until it receives a response. If the response
is A2, then the strategy repeats Step 1. Otherwise p2 invokes tryC2 operation and
takes steps until it receives a response. If the response is A2, then the strategy
repeats Step 1. Otherwise the strategy goes to Step 2.

2. Step 2. If p1 received A1 in Step 1, then the strategy goes to Step 1. Otherwise
process p1 invokes a write operation on x which writes value v′′+1 to x, and p1
takes steps until it receives a response. If the response is A1, then the strategy
goes to Step 1. Otherwise p1 invokes tryC1 operation and takes steps until it
receives a response. If the response is A1, then the strategy goes to Step 1.
Otherwise the strategy stops.

We first prove that the individual transactional operations of I are obstruction-
free, i.e. we prove that each operation in Strategy 2 eventually returns a response.
If in Strategy 1 some process pk, where k ∈ {1,2}, executing a transactional oper-
ation, does not return a response, then pk takes infinitely many steps, and conse-
quently pk is correct. However, pk does not make progress: a contradiction to the
fact that I ensures local progress. Because the individual transactional operations
are obstruction-free and because both processes take steps before Step 1 in Strategy
2 can be repeated, processes p1 and p2 cannot crash in any execution corresponding
to Strategy 2. Note that according to the strategy, process p1 can become parasitic
when transactions of process p2 are repeatedly aborted in Step 1 and the read oper-
ation of p1 is never aborted. Therefore, the strategy does not describe the behavior
of processes in a parasitic-free system, i.e. system in which no process is allowed to
be parasitic.

Next, we prove that Strategy 2 never terminates, i.e. that at Step 2 process p1
is never returned C1 by I in any history of I corresponding to an execution of the
strategy. Assume some finite history H f of I corresponding to an execution of Strat-
egy 2 such that the last event in H f is C1 (Figure 6). Since I ensures opacity, there
exists a sequential finite history Hs which is equivalent to comp(H f ), preserves the
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real-time order of comp(H f ), and every transaction in Hs is legal. Since history H f
has no transaction which are either live or commit-pending, then comp(H f ) = H f .
Hence Hs is equivalent to H f and preserves the real-time order of H f . Since Hs is a
sequential history and preserves the real-time order of H f , then Hs could only have
one of the following forms, where H ′s is a prefix of Hs:

1. Hs =H ′s ·x.read1()·v′1 ·x.write1(v′′+1)·ok1 ·tryC1 ·C1 ·x.read2()·v′′2 ·x.write2(v′+
1) ·ok2 · tryC2 ·C2

2. Hs =H ′s ·x.read2()·v′′2 ·x.write2(v′+1)·ok2 ·tryC2 ·C2 ·x.read1()·v′1 ·x.write1(v′′+
1) ·ok1 · tryC1 ·C1.

In the first case, the last transaction executed by process p2 is not legal in Hs, because
p2 reads value v′′ from t-variable x the value of which is v′′+1. In the second case,
the last transaction executed by process p1 is not legal in Hs, because p1 reads value
v′ from t-variable x the value of which is v′+1. Thus, H f is not opaque. Since every
history H f of I that ends with commit event C1 is not opaque and I ensures opacity,
then H f is not a history of I corresponding to the execution of the strategy. In other
words, every history of I corresponding to the execution of Strategy 2 is infinite.

Consider now some infinite execution α of I corresponding to the execution of
the above strategy. Since process p1 never receives commit event C1 from I, then p1
does not make progress in the corresponding infinite fair history Fα . Since Sys is
parasitic-prone, then process p1 is either parasitic in α or not. Therefore, we focus
on the following two cases:

• Process p1 is parasitic in α . According to the strategy, process p1 is parasitic
in Fα iff starting from some point in time the strategy executes infinitely many
iterations of Step 1 without going to Step 2. Strategy 2 repeats Step 1 without
going to Step 2 iff process p2 is repeatedly returned abort event A2 in Step 1.
Since no process can crash in any execution corresponding to Strategy 1 and p2
receives infinitely many abort events in α , process p2 is correct in Fα . Since I
ensures local progress and p2 is correct in Fα , then process p2 shoudl eventually
receive commit event C2 in Step 1, and therefore the strategy should eventually
go to Step 2: a contradiction.

• Process p1 is not parasitic in α . Since p1 does not crash in α , p1 is correct in
Fα . Since I ensures local progress, then p1 makes progress in Fα : a contradic-
tion.
ut

5 Generalizing the Impossibility

In this section we generalize the impossibility result of the previous section. Namely,
we determine a larger class of TM-liveness properties that are impossible to imple-
ment together with strict serializability, which is weaker than opacity, in fault-prone
systems.
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p1
r→ 0 crash

p2
w(1)

C
r→ 1 crash

p3
r→ 1

w(0)
A

r→ 0

w(1)
A

r→ 1

w(0)
A

Fig. 7 An infinite fair history with three processes and one t-variable that does not ensure any
non-blocking TM-liveness property. Process p1 starts a transaction by invoking a read operations,
but then it crashes. Process p2 executes two transactions, but it crashes during the execution of the
second transaction. Process p3 executes an infinite number of transactions which read value 0 (read
value 1) and write value 1 (write value 0).

5.1 Classes of TM-liveness properties

Non-blocking TM-liveness properties.

Intuitively, we say that a TM-liveness property is non-blocking if it guarantees
progress for every correct process that eventually runs alone. More precisely, a TM-
liveness property L is non-blocking iff L is stronger than Lsolo.

For example, Figure 3, Figure 4, and Figure 5 show infinite fair histories which
ensure non-blocking TM-liveness properties while Figure 7 shows an infinite fair
history which does not ensure any non-blocking TM-liveness property. Local progress,
global progress, and solo progress are non-blocking. Note that solo progress is the
weakest among non-blocking TM-liveness properties while local progress is the
strongest among non-blocking properties.

Biprogressing TM-liveness properties.

Intuitively, we say that a TM-liveness property L is a biprogressing property if it
requires that at least two correct processes make progress. More precisely, a TM-
liveness property L is biprogressing if for every F ∈ L at least two processes are
correct in F , only if at least two processes make progress in F .

For example, Figure 3 and Figure 5 show infinite fair histories which ensure a
biprogressing property while Figure 4 shows an infinite fair history which does not
ensure any biprogressing property. Local progress is a biprogressing property while
global progress and solo progress are not biprogressing.
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5.2 Generalized Result

In this section we show that TM-liveness properties that are both non-blocking and
biprogressing are impossible to implement together with strict serializability in any
fault-prone system. We start by stating the following lemma, which says, intuitively,
that there exists a fair history in which a process executing infinitely many trans-
actions can block the progress of all other processes if the TM ensures any non-
blocking TM-liveness property. The proof of the lemma follows the same line of
reasoning as the proof of Theorem 1.

Lemma 1. For any fault-prone system and every TM implementation that ensures
strict serializability and a non-blocking TM-liveness property in that system, there
exists an infinite fair history F of the implementation such that at least two processes
are correct in F and at most one process makes progress in F.

Proof. Let I be a TM implementation ensuring strict serializability and a non-
blocking TM-liveness property in a fault-prone system Sys. To exhibit a fair history
in which at least two processes are correct and at most one process makes progress
we consider a game between the environment and the implementation. The envi-
ronment acts against the implementation and wins the game if the resulting history
satisfies the requirements of the lemma.

By definition, fault-prone system Sys is a system in which any process can crash
or be parasitic. We thus consider two different cases:

Sys is crash-prone. Consider two processes p1 and p2 that interact with I. The
environment uses Strategy 1 to win the game. We can show that processes p1 and
p2 cannot be parasitic in any execution corresponding to Strategy 1 and that Strategy
1 never terminates using the arguments as in Theorem 1 (because those arguments
do not involve live or aborted transactions).

Consider some infinite execution α of I corresponding to Strategy 1. Since pro-
cess p1 never receives commit event C1 from I, then p1 does not make progress in
the corresponding infinite fair history Fα . Since Sys is crash-prone, then process p1
either crashes in α or does not.

Assume that process p1 crashes in fair history Fα . According to the strategy,
process p1 crashes in Fα only if process p2 invokes infinitely many operations and
does not make progress, i.e. only if p2 is returned an infinite number of abort events
at Step 2. Since p2 is returned an infinite number of abort events and p2 cannot
crash, p2 is correct in Fα . Because p2 runs alone in Fα and I ensures a TM-liveness
property which is non-blocking, then p2 makes progress in H: a contradiction. Thus,
p1 does not crash in Fα . Since p1 is not parasitic in α , p1 is correct in Fα .

According to the strategy, p2 does not crash in Fα since Step 2 is repeated in-
finitely often. Since Step 2 and Step 1 are repeated infinitely often (because p1 does
not crash in Fα ), then p2 receives infinitely many commit events C2, i.e. p2 is correct.
Thus, in fair history Fα both of the processes are correct and at most one process
makes progress (since p1 is never returned C1).
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Sys is parasitic-prone. Consider two processes p1 and p2 that interact with I. The
environment uses Strategy 2 to win the game. We can show that processes p1 and p2
do not crash in any execution corresponding to Strategy 2 and that Strategy 2 never
terminates using the same line of reasoning as in Theorem 1.

Consider now some infinite execution α of I corresponding to the execution of
the above strategy. Since process p1 never receives commit event C1 from I, then p1
does not make progress in the corresponding infinite fair history Fα . Since Sys is
parasitic-prone, then process p1 is either parasitic in α or not.

Assume that p1 is parasitic in α . According to the strategy, p1 can be parasitic
only if p2 does not make progress in Fα and is returned A2 infinitely often (i.e. p2 is
correct in Fα ). Since process p2 runs alone in Fα and I ensures a non-blocking TM-
liveness property, then p2 makes progress in H: a contradiction. Thus, p1 cannot be
parasitic in α . Since p1 does not crash in α , p1 is correct in Fα .

Process p2 cannot be parasitic in α since p2 either invokes tryC2 or is returned
A2 infinitely often at Step 1. Thus, in history Fα both of the processes are correct
and at most one process makes progress (since p1 is never returned C1). ut

By definition, a biprogressing TM-liveness property should ensure progress for
at least two correct processes in every infinite history. While, by the above lemma,
if the property is also non-blocking, then we can find an infinite fair history of any
TM implementation in any fault-prone system in which at least two processes are
correct and at most one process makes progress: a contradiction. Thus, we have the
following theorem.

Theorem 2. For every fault-prone system and every TM-liveness property L which
is non-blocking and biprogressing there is no TM implementation that ensures strict
serializability and L in that system.

6 Conclusion

In this chapter we introduced a set-based framework to formally reason about live-
ness properties of TM systems. The framework separates liveness properties of
transactions from liveness properties of transactional operations. For example, a TM
implementation might satisfy global progress, which requires some correct transac-
tion to commit, and wait-freedom, which requires every correct operation within a
transaction to return a response. Our definition of a TM-liveness property conforms
to standard general definitions of liveness [2, 21, 25] in the sense that (i) it is a trace
property [21, 25] (i.e. it is defined in terms of invocations and responses which are
external events) and (ii) it allows any finite execution [2].

We proved that it is impossible to guarantee both local progress, the strongest
TM-liveness property, and opacity in any fault-prone system. There are several ways
to circumvent our impossibility result. One way is to weaken safety or TM-liveness
property requirements, for example, to require only global progress. There are im-
plementations that ensure opacity and global progress, e.g., OSTM [10]. A second
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way is to assume that all transactions are static and predefined. That is, when a trans-
action T starts a TM implementation knows exactly which operations, on which
t-variables, will be invoked in T , and the operations invoked in T should be the
same in any execution. In that case transactions can be viewed as simple operations
and one can apply classical universal construction [14] to ensure local progress. A
third way is to assume a fault-free system, i.e. assume that no process can crash
or be parasitic. However, it was shown in [20] that even in a fault-free system it
is impossible to guarantee opacity and local progress when a TM implementation
uses a direct-update algorithm and the result can be circumvented only for deferred-
update algorithms. An algorithm is deferred-update if every transaction that writes
a value must invoke a commit request before other transactions can read that value;
an algorithm which is not deferred-update is called direct-update. A fourth way is to
assume a different system model instead of the multi-threaded programming model.
For example, [28] shows a TM implementation that ensures local progress in an
asynchronous multicore system model which assumes that a transaction can be ex-
ecuted by different processes and that some process crashes are detectable by the
runtime system.
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