Combinatorial Topology and Distributed Computing

Maurice Herlihy

Overview

But first, two puzzles

Consensus

k-set agreement

They Communicate ...

Combinatorial Topology (standing on one foot)

A Vertex

Simplicial Complex

Combinatorial: a set of simplexes Geometric: simplexes "glued together" along faces ...

Simplicial Maps

Vertex-to-vertex map ...

Simplicial Map

Carrier Map

Preserves intersections: M (
$$\frac{3}{4}$$
 Å ;) = M ($\frac{3}{4}$) Å M (;)

Vertex = Process State

Simplex = Global State

Complex = Global States

Input Complex for Binary Consensus

Output Complex for Binary Consensus

Carrier Map for Consensus

Carrier Map for Consensus

Carrier Map for Consensus

view = my input value; for (i = 0; i < r; i++) { broadcast view; view += messages received; } return δ(view)

Finite program


```
view = my input value;
for (i = 0; i < r; i++) {
    broadcast view;
    view += messages received;
  }
```

return δ (view)

finally, apply task-specific decision map to view

Protocol Complex

Vertex: process ID, view

Complete log of messages sent & received

Simplex: compatible set of views

Each execution defines a simplex

Example: Synchronous Message-Passing

Failures: Fail-Stop

Single Input: Round Zero

Same as input simplex

Round Zero Protocol Complex

Single Input: Round One

Single Input: Round One

Single Input: Round One

Protocol Complex: Round One

Protocol Complex: Round Two

Protocol Complex Evolution

Consensus Example

29-Oct-19

Consensus Example

29-Oct-19

Theorem

A protocol cannot solve consensus if its complex is *path-connected*

Model-independent!

If Adversary keeps Protocol Complex path-connected ...

"Corners" have distinct colors

Edge vertexes have corner colors

"Corners" have distinct colors

Edge vertexes have corner colors

Every vertex has face boundary colors

Sperner's Lemma

Sperner's Lemma

If the boundary has a Sperner coloring, then at least one triangle has all three colors

Asynchronous *k*-Set Agreement is Impossible

3-process asynchronous readwrite protocol complex is a subdivided triangle (trust me)

Impossibility of 2-Set Agreement

Contradiction: at most 2 can be chosen

Thank You!

This work is licensed under a <u>Creative Commons Attribution-</u> <u>Noncommercial 3.0 Unported</u> <u>License</u>.