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Distributed Optimization

Processes access the same data distribution D and
loss function 2: R4 x D » R

Cost function atx € R%is Q(x) 2 E,_,[?(x, 2)]

& Minimize Q to find x* € argmin Q (x)
x€R4

(Q is differentiable and smooth

or non-convex

Can be either (strongly) convex:a Py




Stochastic Gradient Descent
(SGD)

Stochastic gradient G(x, z) estimates the true gradient
VQ (x) using a random data point z € D

For t=1,2,..
i.id

1. Draw a random data point z ~ D
2. Update Xx;.1 = X; —ntp(xt,z)

‘l‘ Learning rate

Estimates are unbiased: E,_,[G(x,2z)] = VQ(x)
with bounded variance: E, _p[||G(x,2z) — VQ(x)||,] < o




Mini-Batch SGD

Faster convergence by sampling several data points

For t=1,2, ..
i.i.d
1. Draw M random data points zq,..,Zy "'D

2. Update Xx;;1 = Xt — % ﬁ1 G(x¢, 2;)



Simple Distributed Mini-Batch
SGD

Centralized scheme requires synchronization
Parameter server is a single point-of-failure

For t=1,2, ..
j.i.d
1. Draw M random data points z4,..,Zy po)

2. Update X1 =X — 2211, G(xy 2;)

Parameter server

Worker Worker




Decentralized SGD

Fully-connected set of n nodes QO

For t=1, 2, ..
i.i.d

1. A node draws a random data point~ D
& computes new gradient
2. Get gradients from M nodes & update

How good is this?



Strongly Convex Q
o “External” Convergence

Single minimum x™ obtained at a unique point
For any M, any round T, and any node i

1_*2 2
) o (221, o)

I [“x% — X MT MT

Same convergence rate as sequential mini-batch

SGD, with batch size M

: - 2
Implies external convergence [E [Hxl —x" 2] <e€



Strongly Convex Q
o “External” Convergence

Single minimum x™ obtained at a unique point
For any M = the algorithm withstands partitioning

l.e., converges even when communicating with only
a minority

No “split-brain”



Non Strongly Convex Functions
Require a Majority
For some non-convex cost function Q, algorithm
does not converge if a majority of processes fail
max [E |Houtputi — outputhZ] > 0
iJ

(No internal convergence)

Proof more complicated than expected and relies on
probabilistic indistinguishability
[Goren, Moses & Spiegelman, DISC 2021]



General Algorithm

Convergence rate similar to sequential algorithm

[Ghadimi Lan, 2013]

Analysis is a simplified version of

[EIMhamdi,Farhadkhani,Guerraoui,Guirguis,Hoang,Rouault,NeuroIPS 2021]

For iteration t=1,..,T:

G W N

Compute the stochastic gradient gi at xf:
Xt < Xp =M Gt

Send (t, x})

Wait to receive > M iteration-t messages
xl, , « Avg(recieved models)



General Algorithm

But with an additive factor of A, which is reduced
using multi-dimensional approximate agreement

This algorithm needs communication with a majority

For iteration t=1,..,T:

G W N

Compute the stochastic gradient gi at xf:
Xt < Xp =M Gt

Send (t, x})

Wait to receive > M iteration-t messages
xl, , « Avg(recieved models)



Multi-Dimensional
Approximate Agreement

A process starts with input x' € RY and
returns y' € RY, such that the outputs are

- In the convex hull of the inputs
- Contracted by a factor of g relative to the inputs
. -2 . 112
max||y' — y/||. < g max||x' — x’
ax||y’ =y, < q max| I,

[Mendes, Herlihy, Vaidya, Garg, DC 2015]
[Fugger, Nowak, DISC 2018]
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Convergence of General
Algorithm

With an appropriate g, we get internal convergence

max [E x"—xjH2 < 0
,J

Can also show external convergence

d Better (1-dimension) AA when shared-memory is
used

[A,Kumari,Schiller,OPODIS 2020]
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Cluster-Based Model

memory memory memory memory

g NS NI
x process process ’A A‘ process process

- )

>

asynchronous message-passing network Sl e

crash :
all processes fail

* Disjoint clusters, each with shared read/write registers

 All processes can send asynchronous messages to each other
[Raynal, Cao,ICDCS 2019]
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Cluster-Based Model for HPC

memory memory memory memory

o6 | proces | | process | o6 | D6

e process process ¢ i

Py VN oD
process

process process
process process

: >
'asynchronous message-| %network
Multiple Threads of the
compute nodes same process

+ RDMA
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Multi-Dimensional AA in the
Cluster-Based Model

For round r=1..R:

1. z, = ClusterApproximateAgreement (Yy,.)

2. Send (r,z,) to all processes

3. Wait to receive round r messages representing
a majority of processes

4. y,..1 = Aggregate (received values)



Multi-Dimensional AA in the
Cluster-Based Model

A process represents all processes in its cluster

For round r=1..R:

1. z, = ClusterApproximateAgreement (Yy,.)

2. Send (r,z,) to all processes

3. Wait to receive round r messages representing
a majority of processes

4. y,..1 = Aggregate (received values)

Better contraction inside a cluster

Tune to get g-contraction in O(log g) rounds



MDAA within a Cluster

value round#

An array A of {value, round#) for each cluster 2

r — 1 ; A[i] <« (x,r)
while r < constant do
let r _ be the largest round number in A
if r = r . then
X « values in A with round r .
A[i] - (MidExtremes (X),r+l)
r —r + 1
else r — r

max

return some X, s.t. A[]j] = (xj,r+1)

MidExtremes returns the average of the two
values realizing the maximum Euclidean distance



MDAA within a Cluster

value round#

An array A of {value, round#) for each cluster 2

r — 1 ; A[i] <« (x,r)
while r < constant do
let r _ be the largest round number in A
if r = r . then
X « values in A with round r .
A[i] —~ (MidExtremes (X),r+l)
r —r + 1
else r — r

max

return some X, s.t. A[]j] = (xj,r+1)

Ensures constant contraction within O(1) rounds



Skipping




Skipping

A process can skip to the most advanced iteration
instead of going through intermediate iterations

For round r=1..R:

1.
2.
3.

SN

Z, = ClusterApproximateAgreement (y,.)

Send (r,z,) to all processes

Wait to receive round r message from
a majority of clusters

Y,r+1 = AggregationRule (received values)

. If received round r' messages, ' >r,

then skip to round 71’



Recovery through Skipping

Allows recovering process to rejoin the computation

Non-volatile memory can be used to checkpoint the
current status

For round r=1..R:

1.
2.
3.

SN

Z, = ClusterApproximateAgreement (y,.)

Send (r,z,) to all processes

Wait to receive round r message from
a majority of clusters

Y,r+1 = AggregationRule (received values)

. If received round r' messages, ' >r,

then skip to round 71’



Some Related Work

Other work does not ignore (stale) parameters from
previous iterations

[Li,Ben-Nun,Di Girolamo,Alistarh,Torsten Hoefler PPoPP 2020]
[Li,Ben-Nun,Di Girolamo, Dryden,Alistarh, Torsten Hoefler, TPDS 2021]

Elastic consistency bounds the staleness
[Nadiradze, Markov,Chatterjee Kungurtsev,Alistarh, AAAT 2021]
Our MDAA algorithm “beats” a f(d + 2)-redundancy lower
bound for Byzantine failures
[Mendes,Herlihy,Vaidya,Garg, DC 2015]
2f-redundancy is a necessary and sufficient condition for
f-resilient Byzantine optimization
[Su,Vaidya,PODC 2016]
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Thank!
Questions?



General Algorithm

Proceed to the next iteration, only after receiving
current-iteration messages from a majority

For iteration t=1,..,T:

G W N

Compute the stochastic gradient gi at xi

X« xt — ¢ Gt

Send (t, x})

Wait to receive > [n/2| iteration-t messages
xl, , « Avg(recieved models)



Distributed SGD Algorithm

Foriterationt =1..T:

o G AN

Compute stochastic gradient g, w.r.t x;

Update y; = x¢ — 71 g¢

Send (t, y;) to all processes

Collect enough round t models and average them y;
X;+1 = ApproximateAgreement(y;)

If received enough messages for round t' > t then ski;
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Correctness Proof — Definitions

leen a family of vectors, ¥ = (x1, ..., x*) such that
x' € R%, define the coordinate-wise diameter

d
AV (x) 2 Z max |xf — x'[i]]

and the average of the vectors in the family:

1 ~—k
o1 S
kzi:1



Main Correctness Claims

/FO" every iteration t = 1, for a constant learning rate,\
=1 = 2Ld(lml,/21+1)
Smoothness Constant
constan CW (>
T e EIAT ] |0 )
Where:
« AV(Xp) 2 ?:1 max |xlf1 li] — xfz [i]‘ > A, (%)

C1,C2€[m]

e C 24d|\m/2]o + 2€,,4,(IMm/2] + 1)
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Main Correctness Claims

/For every iteration t = 1, for decreasing learning R
1
"ate, N = S raimy/zl+n)
E[AY ()] < My¢/2/C + 11 Cq't/ 2
- /
Where If tlim n, =0
R then L]im E[AY (x,)] = 0
* C é =vYLTTvs —|1% ' _:)T;“iLLX\L""I =1 ' =J
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Correctness Proof

ket C 2 4d|m/2]o + 2€,,,,,(IMm/2] + 1) be a
constant

/For every iteration t = 1, assuming that the learning rate\

: . 1
<
sequence is decreasing, such thatn; < TET LT, then

) 2lm/2] +1 /2
E[A®Y ()] < 1¢/2)C + M C (Zlm/ 2| + 2)

o J

Conclusion: lim E[A“Y(x,)] = 0

t—> o0
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Main Correctness Claims

Por iteration t = 1 and cluster ¢, define the effective
gradient, Gf = (xf — xf™')/n;

e

~

or every iteration t = 1:
E[IGE — VQ(x)II5] <

(24nd + 4)o? + (iz + 41% + 12L2d> E[(AY (X,))?]
N it Y,

Using this lemma, we can prove convergence for
smooth convex and non-convex cost functions
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To Conclude

* Less intra and inter-cluster synchronization

e Can this framework can be used for other
optimization problems?

* Can the algorithm be made practical?

e Can we show theoretical or empirical speedup
compared to the sequential and other distributed
algorithms?



Model

33
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Back to Overall MDAA

€an pick € to ensure g-contraction in O(log g) rounds

For round r=1..R:

1. z, = ClusterApproximateAgreement (Yy,.)

2. Send (r,z,) to all processes

3. Wait to receive round r message from
a majority of clusters

4. y,..1 = Aggregate (received values)



General Algorithm

Proceed to the next iteration after receiving
current-iteration messages from a majority

For iteration t=1,..,T:

tic gradient g at xi
2. xtexl- 1 - g} Perturbation phase
3. Send (t, x})
4. Wait to receive > [n/2]| iteration-t messages

5  y. < Avg(recieved models)
6. xi Sl MultiDimApproxAgree(yD

—> Contraction phase




Prove E [thiﬂ — X

General Algorithm

*

zl <?7? IE[Hx{;—x*

z] +TA

Analysis is a simplified version of

[EIMhamdi,Farhadkhani,Guerraoui,Guirguis,Hoang, Rouault,NeuroIPS 2021]

For iteration t=1,..,T:

G W N

Compute the stochastic gradient gi at xi

Xp < Xg — 1 g

Send (t, x})

Wait to receive > [n/Z] iteration-t messages
xi +1 < Avg(recieved models)



Prove E [thiﬂ —x*

General Algorithm

IE [szlf — X"

2]+A

Matches the sequential algorithm

[Ghadimi,Lan, 2013]

For iteration t=1,..,T:

G W N

Compute the stochastic gradient gf at x%

Xp < Xg — 1 g

Send (t, x})

Wait to receive > [n/Z] iteration-t messages
xf_; +1 < Avg(recieved models)



Prove E [thiﬂ — X

General Algorithm

*

‘] <o)

zl <?7? IE[Hx{;—x*

Reduce A to bring the values together with multi-
dimensional approximate agreement

For iteration t=1,..,T:

G W N

Compute the stochastic gradient gi at xi

Xp < Xg — 1 g

Send (t, x})

Wait to receive > [n/Z] iteration-t messages
xi +1 < Avg(recieved models)



Prove E [thiﬂ — X

General Algorithm

*

‘] <o)

z] <?7? IE[Hx{;—x*

Reduce A to bring the values together with multi-
dimensional approximate agreement

For iteration t=1,..,T:

Compute the stochastic gradient gi at xi

Xp < Xp — 1 - g¢

Send (t, x})

Wait to receive > [n/2] iteration-t messages
yi « Avg(recieved models)

xl, o« MultiDimApproxAgree(y’t')



