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Distributed Optimization
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Stochastic Gradient Descent 
(SGD)

•  

 

Learning rate
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Mini-Batch SGD

Faster convergence by sampling several data points
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Centralized scheme requires synchronization

Parameter server is a single point-of-failure

Simple Distributed Mini-Batch 
SGD

 

Parameter server

Worker Worker Worker …
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Decentralized SGD
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Strongly Convex Q 
⇨ “External” Convergence

•  
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Strongly Convex Q 
⇨ “External” Convergence

•  
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Non Strongly Convex Functions 
Require a Majority

•  
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General Algorithm

Convergence rate similar to sequential algorithm 
[Ghadimi,Lan, 2013]

Analysis is a simplified version of 
[ElMhamdi,Farhadkhani,Guerraoui,Guirguis,Hoang,Rouault,NeuroIPS 2021]
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General Algorithm
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Multi-Dimensional 
Approximate Agreement

•  

[Mendes, Herlihy, Vaidya, Garg, DC 2015]
[Fugger, Nowak, DISC 2018]
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Convergence of General 
Algorithm

•  
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Cluster-Based Model

• Disjoint clusters, each with shared read/write registers 

• All processes can send asynchronous messages to each other

[Raynal, Cao,ICDCS 2019]
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crash
a cluster fails if 

all processes fail
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Cluster-Based Model for HPC

asynchronous message-passing network
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Multi-Dimensional  AA in the 
Cluster-Based Model

 

16



•  

Multi-Dimensional  AA in the 
Cluster-Based Model
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An array A of ⟨value, round#⟩ for each cluster

MidExtremes returns the average of the two 
values realizing the maximum Euclidean distance

r ← 1 ; A[i] ← ⟨x,r⟩
while r < constant do

let rmax be the largest round number in A
if r = rmax then

X ← values in A with round rmax
A[i] ← ⟨MidExtremes(X),r+1⟩
r ← r + 1

else r ← rmax
return some xj s.t. A[j] = ⟨xj,r+1⟩

MDAA within a Cluster

A
value round#

Aggregation rule
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An array A of ⟨value, round#⟩ for each cluster

Ensures constant contraction within O(1) rounds

r ← 1 ; A[i] ← ⟨x,r⟩
while r < constant do

let rmax be the largest round number in A
if r = rmax then

X ← values in A with round rmax
A[i] ← ⟨MidExtremes(X),r+1⟩
r ← r + 1

else r ← rmax
return some xj s.t. A[j] = ⟨xj,r+1⟩

MDAA within a Cluster

A
value round#
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Skipping

r ← 1 ; A[i] ← ⟨x,r⟩
while r < constant do

let rmax be the largest round number in A
if r = rmax then

X ← values in A with round rmax
A[i] ← ⟨MidExtremes(X),r+1⟩
r ← r + 1

else r ← rmax
return some xj s.t. A[j] = ⟨xj,r+1⟩

skipping
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Skipping

A process can skip to the most advanced iteration 
instead of going through intermediate iterations 
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Recovery through Skipping

Allows recovering process to rejoin the computation

Non-volatile memory can be used to checkpoint the 
current status
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Some Related Work

Other work does not ignore (stale) parameters from 
previous iterations

[Li,Ben-Nun,Di Girolamo,Alistarh,Torsten Hoefler,PPoPP 2020]
[Li,Ben-Nun,Di Girolamo, Dryden,Alistarh,Torsten Hoefler,TPDS 2021]

Elastic consistency bounds the staleness 
[Nadiradze,Markov,Chatterjee,Kungurtsev,Alistarh, AAAI 2021]

Our MDAA algorithm “beats” a f(d + 2)-redundancy lower 
bound for Byzantine failures

[Mendes,Herlihy,Vaidya,Garg, DC 2015]

2f-redundancy is a necessary and sufficient condition for 
f-resilient Byzantine optimization

[Su,Vaidya,PODC 2016]
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Thank!
Questions?
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General Algorithm

Proceed to the next iteration, only after receiving 
current-iteration messages from a majority
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Distributed SGD Algorithm

•  
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Correctness Proof – Definitions

•  
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Main Correctness Claims

•   

Smoothness 
constant Parameter 

dimension

Constant
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Main Correctness Claims

•   
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Correctness Proof

•  
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Main Correctness Claims

•  

 

Using this lemma, we can prove convergence for 
smooth convex and non-convex cost functions
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To Conclude

• Less intra and inter-cluster synchronization

•Can this framework can be used for other 
optimization problems?

•Can the algorithm be made practical?

•Can we show theoretical or empirical speedup 
compared to the sequential and other distributed 
algorithms?
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Model

33
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Back to Overall MDAA
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General Algorithm

Proceed to the next iteration after receiving 
current-iteration messages from a majority

 

Perturbation phase

Contraction phase
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General Algorithm

 

•  
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General Algorithm

 

•  

38



General Algorithm

 

•  
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General Algorithm
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