Peter Sellers George G. Scott
AT

Hammer or Gavel?

Or: How I Learned To Stop Wgpeffig And Love The et
- Learning = Alorith

Indranil Gupt s
ndranil Gupta -

Professor, CS, University of lllinois at Urbana Champain

(Joint work with students Beomyeol Jeon', Linda Cai”, Chirag Shetty', Pallavi Srivastava’, Jintao Jiang*, Xiaolan Ke, Yitao
Meng', Cong Xie™

fUIUC, *Princeton University, ‘Microsoft, {UCLA, ““ByteDance

Applications of DNNs to Systems Problems

* “When you have a hammer, everything looks like a nail” — Abraham
Maslow/Abraham Kaplan /Mark Twain

QUIET
WAIT! NAIL.

Some Real Reasons Companies Throw DNNs
at a Problem

* Simple models often work well

* They have the datacenter resources

* They have the data

* You don’t have to be (that) creative and design an algorithm

* Many (not all) in industry production teams...prefer not to read papers
e “Something will work!”

* And yet...

* Anecdotal evidence: “DNNs have high accuracy in papers, but if you get
25% accuracy from them in real life, consider yourself lucky!”
* Dangerous if applying DNNs to solving systems problems!

* Nevertheless, DNNs are useful for a variety of data processing

applications
* Applying DNNs to systems problems needs a rethink 2

Two “Simple” DNN _ ~
Models

HierarchicalRL (Google), ICLR 2018

Device for Device for Device for \
group 1 group 2 group 10

A

Softmax

Attention

Hidden
state

Embedding

ColocRL (Google), ICML 2017

TJ

type output

shapes

opl

output
shapes

—

1
i
|
|
I
|
I
|
Hidden > > ... > :{ I—>| I—»‘ .. —>|‘]
1
state T T X X || X
1
|
. average average average \
Embedding of group 1 of group 2 of group 10 go \
embedding embedding embedding \
A A Pl
S ine ¥ ok
\ = S<”
\ R = N ~
/Grouper o S \
. \ - S~
e, N et ¥
group group group group
Softmax id id id id
A A
g output tput : output g output “
Embedding shages Lk :r:jag:s adl type sr:‘aS:s 2dl type shages adi
\ opl op2 op3 opl0000 /
Device Device Device
for opl for op2 for op100
\
\

op2

output

shapes i

opl00

<go>

=M

Case Study

* Our project on the problem of “Model Parallelism of DNNs”

* Key Problem: Model Parallelism == Split a DNN model graph (for training) across
multiple devices (GPUs) to satisfy memory constraints

Model Size (in billions of parameters)

Why? ML Model sizes outpacing memory

Average selling price of 1Gb equivalent DRAM units

.- U.S. dollars)

1000 -~

4 1.2

GPT-3 (175B) —__

100 Megatron-Turing NLG (530B) : 0.93

0.8

Megatron-LM (8.3B)

10 g 0.6
1 <
0.2
BERT-Large (340M)
0.1 [Julien Simon Blog i — B 36
\ 1 s) huggingface.co]
[statista.com]
0.01
2018 2019 2020 2021 2022

2021*

2022*

2023*

Key Problem: Model Parallelism ==

Why M Qd e| Para | |e | ism 3 Split a model graph (for training) across

devices (GPUs) to satisfy memory constraints

* Even 32GB GPU insufficient for > 1.3 B parameters
M60 K80 P100 T4 WS V100 A10G A100

Graviton
Memory 8 GB 8 GB 12GB 12/16 GB 16 GB 16 GB 16/32 GB 24 GB 40 GB

* GPUs used in AWS, Google Cloud, and Azure

* ML training on rﬁé%’;‘ory-constrained devices

ML Model

K cormoeesean M B
MYSELF, ... OR | MAY :
| ABSENT- MINDEDLY PUNCH)i
i THIS TYPEWRITER INTO_)
WRECKAGE !

Approach 1/3: DIY (By hand)

* Expert-designed Approach
* Developer does placement manually &
*E.g., Google Neural Machine Translation (GNMT), Inception-v3

= High placement time: Require domain knowledge and
significant manual efforts

< Low step times (of placed model)

Approach 2/3:
DNNs to the Rescuel...?

< Learning-based Approaches to Placement
e Use Reinforcement learning (RL)
e ColocRL [ICML 2017] (Google)
 HierarchicalRL [ICLR 2018] (Google)
* Placeto [NeurlPS 2019] (MIT)

<~ Low step times (of placed models) comparable to expert placements

= Require very long placement time to place ML models (2 hours ~ 3 days)
* Using Placeto on NMT models took 68.67 hours (2.86 days).

@ Require re-training on different ML models and varying environment

Approach 3/3: Magic!

* Transformative!
e Radical!!

* Unthinkable in decades before!!!

* Our new approach: Baechi [SoCC 2020]

* (“Baechi” = Korean word for placement)

III

Baechi’s “radical” idea...
Old-fashioned Algorithms

* DNN = Just a task precedence/dependency graph

* Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. 1989. B
Scheduling Precedence Graphs in Systems with Interprocessor Communication
Times. SIAM Jornal on Computing 18, 2 (1989), 244—-257.

* ETF Placement Algorithm: Earliest Task First

* Claire Hanen and Alix Munier. 1995. An Approximation Algorithm for Scheduling
Dependent Tasks on m Processors with Small Communication Delays. In 4th
INRIA/IEEE Symposium on Emerging Technologies and Factory Automation (ETFA
'95), Vol. 1. IEEE, 167-189.

* SCT Placement Algorithm: Small Communication Time

10

Classical ETF

* Earliest Task First (ETF)

* Schedule an operator with earliest schedulable time
on its corresponding device first

e Assumes Infinite memory

* |n example: op_number
] 2 > op4
compute time (memory)

Memory: 7

Device O

Device O

Device 1

Memory: 3

Device 2

Execution time: 13

Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor

Communication Times. SIAM Journal on Computing, 18(2) 11

1. m-ETF: Baechi’s Memory constrained ETF

* Earliest Task First (ETF)

* Schedule an operator with earliest schedulable time
on its corresponding device first

e Assumes Infinite memory
* Our modified version: m-ETF @ 2 >
* What if device memory limit is 57 Device 1 ' Device 1

* Exclude devices with insufficient memory 00M (Memory: 7
from placement
Device 1

Memory: 3 =
>

Device O

Device 2

Execution time: 13 = 14

12

Classical SCT

* Small Communication Time (SCT)

Device 0

* Find operator’s favorite child (via ILP) and
schedule it on the same device as parent

op2: op3’s favorite child

Theorem (Old). SCT's execution time has a constant

approximation ratio with respect to the optimal execution
time*,
Device 0
Memory: 6
Device 1
Memory: 4
Device 2
Execution time: 11
Hanen and Munier. An Approximation Algorithm for Scheduling Dependent
13

Tasks on m Processors with Small Communication Delays. ETFA ‘95 * Conditions apply

2. m-SCT: Baechi’s Memory constrained SCT

* Small Communication Time (SCT)

* Find operator’s favorite child (via ILP) and
schedule it on the same device as parent

Device 0

 Our modified version: m-SCT op2: op3’s favorite child

* Determine favorite child via relaxed ILP
(integer [values in [0,1], and later round @ . ,
: . : (1)
up/down). Solved by interior point method.
* Exclude devices with insufficient memory S
from placement OOM (Memory: 6
* Each device memory limitis 5 Device 1
Memory: 4 =

Theorem (New). m-SCT's execution time has a
constant approximation ratio with respect to the

optimal execution time*:. Execution time: 11 = 14

Device 2

14

From an Algorithm to a System

* We can prove that these m-SCT(m-ETF) algorithms are within a constant factor of
optimal.

* (Believe it or not, this was the easy part.)

* We implemented them into TensorFlow (1.12). Alas:
* Generated placement results were infeasible
e Performance was awful

15

Challenges #1: TensorFlow Colocation
Constraints

* TensorFlow requires some operators to be
colocated |

group: step

Device 0

Device 1 Device 2

group: weight group: weight

X

16

Challenges #1: TensorFlow Colocation
Constraints

* TensorFlow requires some operators to be
colocated |

group: step

Device 0

> Tried post-adjust placement

* Fix colocation-unaware placement to satisfy the
colocation constraints (tried 3 different ways)

* Inconsistent performance gain
group: step

> Co-adjust placement
* Consider colocations while creating schedule BEVIEER Device 1

. group: weight group: weight
« 1%t operator in a group placed =
other ops in the group placed on the same device

17

Challenge #2: Communication Blowup

* Splitting an ML model graph

= Communication 1 @ Transpose Reshape @
= Ste P time T Device 0 Device 0 . Device 0 Device 0

Data Transfers

Device 1 Device 2

O Expensive computation

O Cheap computation

18

Challenge #2: Communication Blowup

* Splitting an ML model graph
Transpose Reshape

= Communication @ @
= Step time T Device 0 Device 0 Device 0 Device 0

2 Operator Co-placement

e Operator’s output is only used by its successor
= Place them together Device 0 Device 0

* Place respectively-matched forward and
backward operators together Q Expensive computation

Cheap computation

19

Challenge

3: Massive Number of Operators

* Number of operators 1 = Placement time

* E.g., 4-layer GNMT

e 22,340 operators = 7-minute placement time

> Operator Fusion

* Fuse operators that are directly connected and
in the same co-placement group

group: step

group: weight group: weight

20

Challenge #3: Massive Number of Operators

* Number of operators 1 = Placement time

* E.g., 4-layer GNMT

e 22,340 operators = 7-minute placement time

> Operator Fusion

* Fuse operators that are directly connected and group: step
in the same co-placement group @
* May introduce cycles

* Checking all cycles — Expensive, Not scalable
e Conservative, local and so scalable heuristic

group: weight

21

Challenge

3: Massive Number of Operators

> Forward-Operator-based Placement

* Place ops by only considering forward ops

* Place backward ops as their corresponding forward
ops on the same device

* 4-layer GNMT

* # operators: 22,340 = 706
* Placement time: 7 minutes = 1.2 seconds

group: step

Update
Step

group: step

group: weight group: weight

22

Challenge #4: Different Network Architecture

* m-SCT and m-ETF assume parallel communication

* Environment with a constrained network
. .. Device O
* Only sequential communication is supported C)

e E.g., Indirect GPU-to-GPU communication

2 Sequential Communication Support
* Introduce device communication queues Device 1 Device 2

* Baechi planner automatically adds queuing time

e Support computation-communication overlap
* Cache received data to avoid duplicate transfers

23

Baechi-PT: Integrating Baechi into PyTorch

* That was for Baechi [J TensorFlow
* We also integrated Baechi [J PyTorch

* Challenges

e PyTorch has modules (unlike TensorFlow’s operators which are fine-grained)
* PyTorch Developers need to specify communication programmatically

* Baechi-PT integration addresses this by

1. Co-placement of subgraphs of modules that are common design patterns in the model
2. Annotating tensors for backpropagation

3. An automated wrapper-based communication protocol (leverages CUDA streams for both
computation and communication)

24

How Long Does It Take to Place? (Placement
Time)

* 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication

e Baechi-TensorFlow

Model HierarchicalRL [34] Placeto [2] Baechi (m-SCT)

Inception-V3 11 hrs 50 mins 1 hr 49 mins 1-10 seconds
NMT (GNMT) 1 day 21 hrs 14 mins 2 days 20 hrs 40 mins 1.2-48 seconds

Inception-V3: GNMT:

654x—42.6Kx Speedup 3392x-206Kx Speedup
over RL over RL

(Excludes profiling time, which was 10-12 s for the entire model)

25

How Fast Are Placed Models (Step Times)?

— Speedup over

Single GPU Expert (4 GPUs)

Batch Single

Model Size GPU m-TOPQ| | m-ETH | m-SCT| m-ETF m-SCT |m-ETF | n-SCT

Inceptionvs 32 0269 [0269 || 0286 || 0269 0269 0.00% (1 GEU Expert)

3 64 0491 J0491 || 0521 || 0.491 || 0.491 0.00% (1 GEU Expert)
= GNMT 128 0251 0214 || 0.265 || 0224 0212 | 121% 184% | -45% | |0.9%
o (length:40) 256 0474 0376 || 0481 || 0354|| 0369 | 33.9% 285% | 6.2% ||1.9%
[qf, GNMT 128 0319 0259 || 0348 || 0264)| 0267 | 209% 195% | -1.9% | |-3.0%
(length: 50) 256 0.618 || 0.484 || 0.609 || 0502|| 0516 | 23.1% 198% | -3.6% | |-6.2%

= Inceptionvs 2 0240 J0240 1| 0274 || 0241 0241 0.00% (1 GEU Expert)

8 64 0461 Jo0461 || 0537 || 0.465|| 0.462 0.00% (1 GEU Expert)
& Transformer 64 0.249 |0257 || 0262 || 0242 || 0244 | 29% 20% | 62% ||53%
A (length:50) 128 0465 |0.462 || 0466 || 0451|| 0453 | 3.0% 26% | 24% ||2.0%

m-TOPO: m-ETF m-SCT
up to 34% higher than expert -4.5% t0 6.2% speedup -6.2% to 5.3% speedup

26

How Effective are the Optimizations?

* m-SCT in Baechi-TensorFlow

« All optimizations applied Number of Operators:
96.8%—-99.8% Reduction

Un-Optimized Optimized

Model Placement . |Placement|| Step
Ops | (seconds) (seconds) || (seconds) Placement times:
Inception-V3 | 6884 68.0 0.9 0.269 :
75.6x—229.3x Speedu
ol 275.1 1.2 0.212 p p

(length: 40) | 18050

GNMT
(length: 50)

406.1 24 0.267

Step times:

1.1x-3.0x Speedup

27

Baechi-Parallel and -Inspired Takeaways

e Other Algorithmic Model Parallelism Approaches

» (concurrent with Baechi, though standalone) Jakub Tarnawski, Amar Phanishayee, Nikhil Devanur,
Divya Mahajan, and Fanny Nina Paravecino, “Efficient Algorithms for Device Placement of DNN
Graph Operators,” NeurlPS 2020.

* (inspired by Baechi) Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. 2021, Towards
Optimal Placement and Scheduling of DNN Operations with Pesto, Middleware 2021

» Other related works that came afterward: Megatron-LM and Terapipe (for Transformers), Pipedream
(Pipeline parallelism), Alpa & Unity (combining different parallelisms)

28

Lessons Learned: Using RL vs. Using
Algorithms

* RL approaches need retraining when one changes the setup (scale), devices, or
model

 Algorithmic approaches are more generalizable

* Designing good algorithms can be hard, but sometimes easier than one expects!
(especially if one reads the literature)

e Adapting an algorithm into a system is non-trivial.
* Baechi TensorFlow took 1-2 person years, led by one determined graduate student
» Baechi PyTorch was tough (0.6 person years), faster because of our previous TF experience

e But the rewards are worth it!

* Creativity and Determination >> massive resources at FAANG companies

29

Lessons Learned (2): Hammer vs. Gavel

* Not indiscriminate: Using the RL/DNN Hammer for systems problems should be selective

* Parallel Design: DNN development and Algorithm development should occur in parallel,
rather than “either or”

* Concurrent at Run-time: Many scenarios where algo can give you a quick solution, and
DNN can help customize it (or vice versal)

* Papers using DNN must explicitly explain
* Alternative algorithmic designs explored
 Why those didn’t work
 Why ML is a good match for this problem
* Compare DNN to best-known algorithms

(or heuristics)

* “Simplicity is the ultimate sophistication.” — Lao Tzu

30

