Hammer or Gavel?

Peter Sellers George C. Scott

Indranil Gupta

Professor, CS, University of Illinois at Urbana Champaign

(Joint work with students Beomyeol Jeon[†], Linda Cai^{*}, Chirag Shetty[†], Pallavi Srivastava[°], Jintao Jiang[‡], Xiaolan Ke[†], Yitao Meng[†], Cong Xie^{**}

[†]UIUC, ^{*}Princeton University, [°]Microsoft, [‡]UCLA, ^{**}ByteDance

Applications of DNNs to Systems Problems

• "When you have a hammer, everything looks like a nail" – Abraham Maslow/Abraham Kaplan /Mark Twain

Some Real Reasons Companies Throw DNNs at a Problem

- Simple models often work well
- They have the datacenter resources
- They have the data
- You don't have to be (that) creative and design an algorithm
- Many (not all) in industry production teams...prefer not to read papers
- "Something will work!"
- And yet...
 - Anecdotal evidence: "DNNs have high accuracy in papers, but if you get 25% accuracy from them in real life, consider yourself lucky!"
 - Dangerous if applying DNNs to solving systems problems!
- Nevertheless, DNNs are useful for a variety of data processing applications
- Applying DNNs to systems problems needs a rethink

Case Study

- Our project on the problem of "Model Parallelism of DNNs"
- Key Problem: Model Parallelism == Split a DNN model graph (for training) across multiple devices (GPUs) to satisfy memory constraints

Why? ML Model sizes outpacing memory

Key Problem: Model Parallelism == Why Model Parallelism? Split a model graph (for training) across devices (GPUs) to satisfy memory constraints

• Even 32GB GPU **insufficient** for > 1.3 B parameters

GPU	P4	M60	K80	P100	Τ4	AWS Graviton	V100	A10G	A100
Memory	8 GB	8 GB	12 GB	12/16 GB	16 GB	16 GB	16/32 GB	24 GB	40 GB

• GPUs used in AWS, Google Cloud, and Azure

Approach 1/3: DIY (By hand)

- Expert-designed Approach
 - Developer does placement manually

- E.g., Google Neural Machine Translation (GNMT), Inception-v3
- High placement time: Require domain knowledge and significant manual efforts
- 😂 Low step times (of placed model)

Approach 2/3: DNNs to the Rescue!...?

Solution Learning-based Approaches to Placement

- Use Reinforcement learning (RL)
- ColocRL [ICML 2017] (Google)
- HierarchicalRL [ICLR 2018] (Google)
- Placeto [NeurIPS 2019] (MIT)
- Sow step times (of placed models) comparable to expert placements
- Require very long **placement time** to place ML models (2 hours ~ 3 days)
 - Using Placeto on NMT models took 68.67 hours (2.86 days).
- ☺ Require **re-training** on different ML models and varying environment

Approach 3/3: Magic!

- Transformative!
- Radical!!
- Unthinkable in decades before!!!
- 😚
- Our new approach: Baechi [SoCC 2020]
 - ("Baechi" = Korean word for placement)

10

Baechi's "radical" idea... Old-fashioned Algorithms

- DNN = Just a task precedence/dependency graph
- Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. 1989. Scheduling Precedence Graphs in Systems with Interprocessor Communication Times. SIAM Jornal on Computing 18, 2 (1989), 244–257.

• ETF Placement Algorithm: Earliest Task First

- Claire Hanen and Alix Munier. 1995. An Approximation Algorithm for Scheduling Dependent Tasks on m Processors with Small Communication Delays. In 4th INRIA/IEEE Symposium on Emerging Technologies and Factory Automation (ETFA '95), Vol. 1. IEEE, 167–189.
 - SCT Placement Algorithm: Small Communication Time

Classical ETF

- Earliest Task First (ETF)
 - Schedule an operator with *earliest schedulable time* on its corresponding device *first*
 - Assumes Infinite memory
- In example: *op_number compute time (memory)*

Execution time: 13

1. m-ETF: Baechi's Memory constrained ETF

- Earliest Task First (ETF)
 - Schedule an operator with *earliest schedulable time* on its corresponding device *first*
 - Assumes Infinite memory

• Our modified version: *m*-ETF

- What if device memory limit is 5?
- *Exclude* devices with *insufficient* memory from placement

Execution time: $13 \Rightarrow 14$

Classical SCT

- Small Communication Time (SCT)
 - Find operator's *favorite child* (via ILP) and schedule it on the *same* device as parent

Theorem (Old). *SCT's execution time has a constant approximation ratio with respect to the optimal execution time**.

2. m-SCT: Baechi's Memory constrained SCT

- Small Communication Time (SCT)
 - Find operator's *favorite child* (via ILP) and schedule it on the *same* device as parent
- Our modified version: *m*-SCT
 - Determine favorite child via *relaxed ILP* (integer
 values in [0,1], and later round up/down). Solved by interior point method.
 - *Exclude* devices with *insufficient* memory from placement
 - Each device memory limit is 5

Theorem (New). *m-SCT's execution time has a constant approximation ratio* with respect to the optimal execution time*.

From an Algorithm to a System

- We can prove that these m-SCT(m-ETF) algorithms are within a constant factor of optimal.
- (Believe it or not, this was the easy part.)
- We implemented them into TensorFlow (1.12). Alas:
 - Generated placement results were infeasible
 - Performance was **awful**

Challenges #1: TensorFlow Colocation Constraints

• TensorFlow *requires* some operators to be *colocated*

Challenges #1: TensorFlow Colocation Constraints

- TensorFlow *requires* some operators to be *colocated*
- Tried post-adjust placement
 - Fix *colocation-unaware* placement to satisfy the colocation constraints (tried 3 different ways)
 - Inconsistent performance gain
- Co-adjust placement
 - Consider colocations while creating schedule
 - 1st operator in a group placed ⇒
 other ops in the group placed on the same device

Challenge #2: Communication Blowup

- Splitting an ML model graph
 - \Rightarrow Communication \uparrow
 - \Rightarrow Step time \uparrow

Challenge #2: Communication Blowup

- Splitting an ML model graph
 - \Rightarrow Communication \uparrow
 - \Rightarrow Step time \uparrow
- ▷ Operator Co-placement
 - Operator's output is *only* used by its successor
 ⇒ Place them *together*
 - Place respectively-matched forward and backward operators *together*

Challenge #3: Massive Number of Operators

- Number of operators $\uparrow \Rightarrow$ Placement time \uparrow
- E.g., 4-layer GNMT
 - 22,340 operators \Rightarrow 7-minute placement time
- Operator Fusion
 - Fuse operators that are *directly connected* and *in the same co-placement group*

Challenge #3: Massive Number of Operators

- Number of operators $\uparrow \Rightarrow$ Placement time \uparrow
- E.g., 4-layer GNMT
 - 22,340 operators \Rightarrow 7-minute placement time
- Operator Fusion
 - Fuse operators that are *directly connected* and *in the same co-placement group*
 - May introduce cycles
 - Checking all cycles Expensive, Not scalable
 - Conservative, local and so scalable heuristic

Challenge #3: Massive Number of Operators

Forward-Operator-based Placement

- Place ops by *only* considering forward ops
 - Place backward ops as their corresponding forward ops on the same device
- 4-layer GNMT
 - # operators: 22,340 ⇒ **706**
 - Placement time: 7 minutes ⇒ **1.2 seconds**

Challenge #4: Different Network Architecture

• m-SCT and m-ETF assume *parallel communication*

- Environment with a constrained network
 - Only sequential communication is supported
 - E.g., Indirect GPU-to-GPU communication
- Sequential Communication Support
 - Introduce device communication queues
 - Baechi planner automatically adds queuing time
 - Support computation-communication overlap
 - Cache received data to avoid duplicate transfers

Baechi-PT: Integrating Baechi into PyTorch

- That was for Baechi 🗆 TensorFlow
- We also integrated Baechi

 PyTorch
- Challenges
 - PyTorch has modules (unlike TensorFlow's operators which are fine-grained)
 - PyTorch Developers need to specify communication programmatically
- Baechi-PT integration addresses this by
 - 1. Co-placement of subgraphs of modules that are common design patterns in the model
 - 2. Annotating tensors for backpropagation
 - **3.** An automated wrapper-based communication protocol (leverages CUDA streams for both computation and communication)

How Long Does It Take to Place? (Placement Time)

- 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication
- Baechi-TensorFlow

Model	HierarchicalRL [34]	Placeto [2]	Baechi (m-SCT)		
Inception-V3	11 hrs 50 mins	1 hr 49 mins	1-10 seconds		
NMT (GNMT)	1 day 21 hrs 14 mins	2 days 20 hrs 40 mins	1.2-48 seconds		

Inception-V3: 654×–42.6K× Speedup over RL GNMT: **3392×–206K×** Speedup over RL

(Excludes profiling time, which was 10-12 s for the entire model)

How Fast Are Placed Models (Step Times)?

		Batch	Single					Singl	e GPU	Expert (4	GPUs)
	Model	Size	GPU	Expert	m-TOPO	m-ETF	m-SCT	m-ETF	m-SCT	m-ETF		m-SCT
2	Inception-V3	32	0.269	0.269	0.286	0.269	0.269	(0.00% (1 GF	U Exper)	
M		64	0.491	0.491	0.521	0.491	0.491		0.00% (1 GF	U Exper)	
Flo	GNMT	128	0.251	0.214	0.265	0.224	0.212	12.1%	18.4%	-4.5%		0.9%
sor	(length: 40)	256	0.474	0.376	0.481	0.354	0.369	33.9%	28.5%	6.2%		1.9%
len	GNMT	128	0.319	0.259	0.348	0.264	0.267	20.9%	19.5%	-1.9%		-3.0%
L	(length: 50)	256	0.618	0.484	0.609	0.502	0.516	23.1%	19.8%	-3.6%		-6.2%
rch	Incontion V2	32	0.240	0.240	0.274	0.241	0.241		0.00% (1 GF	U Exper)	
	inception-v 5	64	0.461	0.461	0.537	0.465	0.462		0.00% (1 GF	U Exper)	
γTo	Transformer	64	0.249	0.257	0.262	0.242	0.244	2.9%	2.0%	6.2%		5.3%
$\mathbf{P}_{\mathbf{J}}$	(length: 50)	128	0.465	0.462	0.466	0.451	0.453	3.0%	2.6%	2.4%		2.0%
()												

m-TOPO: up to 34% higher than expert m-ETF

-4.5% to 6.2% speedup

m-SCT

-6.2% to 5.3% speedup

Speedup over

How Effective are the Optimizations?

- m-SCT in Baechi-TensorFlow
- All optimizations applied

		Un-Optimiz	zed	Optimized				
Model	Num. Ops	Placement (seconds)	Step (seconds)	Num. Ops	Placement (seconds)	Step (seconds)		
Inception-V3	6884	68.0	0.302	17	0.9	0.269		
GNMT (length: 40)	18050	275.1	0.580	542	1.2	0.212		
GNMT (length: 50)	22340	406.1	0.793	706	2.4	0.267		

Number of Operators: 96.8%–99.8% Reduction

Placement times: 75.6×–229.3× Speedup

Step times: 1.1×–3.0× Speedup

Baechi-Parallel and -Inspired Takeaways

- Other Algorithmic Model Parallelism Approaches
 - *(concurrent with Baechi, though standalone)* Jakub Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Mahajan, and Fanny Nina Paravecino, "Efficient Algorithms for Device Placement of DNN Graph Operators," NeurIPS 2020.
 - *(inspired by Baechi)* Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. 2021, Towards Optimal Placement and Scheduling of DNN Operations with Pesto, Middleware 2021
 - Other related works that came afterward: Megatron-LM and Terapipe (for Transformers), Pipedream (Pipeline parallelism), Alpa & Unity (combining different parallelisms)

Lessons Learned: Using RL vs. Using Algorithms

- RL approaches need retraining when one changes the setup (scale), devices, or model
- Algorithmic approaches are more generalizable
- Designing good algorithms can be hard, but sometimes easier than one expects! (especially if one reads the literature)
- Adapting an algorithm into a system is non-trivial.
 - Baechi TensorFlow took 1-2 person years, led by one determined graduate student
 - Baechi PyTorch was tough (0.6 person years), faster because of our previous TF experience
- But the rewards are worth it!
- Creativity and Determination >> massive resources at FAANG companies

Lessons Learned (2): Hammer vs. Gavel

- Not indiscriminate: Using the RL/DNN Hammer for systems problems should be selective
- **Parallel Design**: DNN development and Algorithm development should occur in parallel, rather than "either or"
- **Concurrent at Run-time**: Many scenarios where algo can give you a quick solution, and DNN can help customize it (or vice versa!)
- Papers using DNN must explicitly explain
 - Alternative algorithmic designs explored
 - Why those didn't work
 - Why ML is a good match for this problem
 - Compare DNN to best-known algorithms (or heuristics)

