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Applications of DNNs to Systems Problems

* “When you have a hammer, everything looks like a nail” — Abraham
Maslow/Abraham Kaplan /Mark Twain

QUIET
WAIT! NAIL.




Some Real Reasons Companies Throw DNNs
at a Problem

* Simple models often work well

* They have the datacenter resources

* They have the data

* You don’t have to be (that) creative and design an algorithm

* Many (not all) in industry production teams...prefer not to read papers
e “Something will work!”

* And yet...

* Anecdotal evidence: “DNNs have high accuracy in papers, but if you get
25% accuracy from them in real life, consider yourself lucky!”
* Dangerous if applying DNNs to solving systems problems!

* Nevertheless, DNNs are useful for a variety of data processing

applications
* Applying DNNs to systems problems needs a rethink 2



Two “Simple” DNN _  ~
Models

HierarchicalRL (Google), ICLR 2018
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Case Study

* Our project on the problem of “Model Parallelism of DNNs”

* Key Problem: Model Parallelism == Split a DNN model graph (for training) across
multiple devices (GPUs) to satisfy memory constraints




Model Size (in billions of parameters)

Why? ML Model sizes outpacing memory
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Key Problem: Model Parallelism ==

Why M Qd e| Para | |e | ism 3 Split a model graph (for training) across

devices (GPUs) to satisfy memory constraints

* Even 32GB GPU insufficient for > 1.3 B parameters
M60 K80 P100 T4 WS V100 A10G A100

Graviton
Memory 8 GB 8 GB 12GB 12/16 GB 16 GB 16 GB 16/32 GB 24 GB 40 GB

* GPUs used in AWS, Google Cloud, and Azure

* ML training on rﬁé%’;‘ory-constrained devices

ML Model
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Approach 1/3: DIY (By hand)

* Expert-designed Approach
* Developer does placement manually &
*E.g., Google Neural Machine Translation (GNMT), Inception-v3

= High placement time: Require domain knowledge and
significant manual efforts

< Low step times (of placed model)




Approach 2/3:
DNNs to the Rescuel...?

< Learning-based Approaches to Placement
e Use Reinforcement learning (RL)
e ColocRL [ICML 2017] (Google)
 HierarchicalRL [ICLR 2018] (Google)
* Placeto [NeurlPS 2019] (MIT)

<~ Low step times (of placed models) comparable to expert placements

= Require very long placement time to place ML models (2 hours ~ 3 days)
* Using Placeto on NMT models took 68.67 hours (2.86 days).

@ Require re-training on different ML models and varying environment



Approach 3/3: Magic!

* Transformative!
e Radical!!

* Unthinkable in decades before!!!

* Our new approach: Baechi [SoCC 2020]

* (“Baechi” = Korean word for placement)



III

Baechi’s “radical” idea...
Old-fashioned Algorithms

* DNN = Just a task precedence/dependency graph

* Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. 1989. B
Scheduling Precedence Graphs in Systems with Interprocessor Communication
Times. SIAM Jornal on Computing 18, 2 (1989), 244—-257.

* ETF Placement Algorithm: Earliest Task First

* Claire Hanen and Alix Munier. 1995. An Approximation Algorithm for Scheduling
Dependent Tasks on m Processors with Small Communication Delays. In 4th
INRIA/IEEE Symposium on Emerging Technologies and Factory Automation (ETFA
'95), Vol. 1. IEEE, 167-189.

* SCT Placement Algorithm: Small Communication Time

10



Classical ETF

* Earliest Task First (ETF)

* Schedule an operator with earliest schedulable time
on its corresponding device first

e Assumes Infinite memory

* |n example: op_number
] 2 > op4
compute time (memory)

Memory: 7

Device O

Device O

Device 1

Memory: 3

Device 2

Execution time: 13

Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor

Communication Times. SIAM Journal on Computing, 18(2) 11



1. m-ETF: Baechi’s Memory constrained ETF

* Earliest Task First (ETF)

* Schedule an operator with earliest schedulable time
on its corresponding device first

e Assumes Infinite memory
* Our modified version: m-ETF @ 2 >
* What if device memory limit is 57 Device 1 ' Device 1

* Exclude devices with insufficient memory 00M ( Memory: 7
from placement
Device 1

Memory: 3 =
>

Device O

Device 2

Execution time: 13 = 14

12



Classical SCT

* Small Communication Time (SCT)

Device 0

* Find operator’s favorite child (via ILP) and
schedule it on the same device as parent

op2: op3’s favorite child

Theorem (Old). SCT's execution time has a constant

approximation ratio with respect to the optimal execution
time*,
Device 0
Memory: 6
Device 1
Memory: 4
Device 2
Execution time: 11
Hanen and Munier. An Approximation Algorithm for Scheduling Dependent
13

Tasks on m Processors with Small Communication Delays. ETFA ‘95 * Conditions apply




2. m-SCT: Baechi’s Memory constrained SCT

* Small Communication Time (SCT)

* Find operator’s favorite child (via ILP) and
schedule it on the same device as parent

Device 0

 Our modified version: m-SCT op2: op3’s favorite child

* Determine favorite child via relaxed ILP
(integer [ values in [0,1], and later round @ . ,
: . : (1)
up/down). Solved by interior point method.
* Exclude devices with insufficient memory S
from placement OOM ( Memory: 6
* Each device memory limitis 5 Device 1
Memory: 4 =

Theorem (New). m-SCT's execution time has a
constant approximation ratio with respect to the

optimal execution time*:. Execution time: 11 = 14

Device 2

14



From an Algorithm to a System

* We can prove that these m-SCT(m-ETF) algorithms are within a constant factor of
optimal.

* (Believe it or not, this was the easy part.)

* We implemented them into TensorFlow (1.12). Alas:
* Generated placement results were infeasible
e Performance was awful

15



Challenges #1: TensorFlow Colocation
Constraints

* TensorFlow requires some operators to be
colocated |

group: step

Device 0

Device 1 Device 2

group: weight group: weight

X

16



Challenges #1: TensorFlow Colocation
Constraints

* TensorFlow requires some operators to be
colocated |

group: step

Device 0

> Tried post-adjust placement

* Fix colocation-unaware placement to satisfy the
colocation constraints (tried 3 different ways)

* Inconsistent performance gain
group: step

> Co-adjust placement
* Consider colocations while creating schedule BEVIEER Device 1

. group: weight group: weight
« 1%t operator in a group placed =
other ops in the group placed on the same device

17



Challenge #2: Communication Blowup

* Splitting an ML model graph

= Communication 1 @ Transpose Reshape @
= Ste P time T Device 0 Device 0 . Device 0 Device 0

Data Transfers

Device 1 Device 2

O Expensive computation

O Cheap computation

18



Challenge #2: Communication Blowup

* Splitting an ML model graph
Transpose Reshape

= Communication @ @
= Step time T Device 0 Device 0 Device 0 Device 0

2 Operator Co-placement

e Operator’s output is only used by its successor
= Place them together Device 0 Device 0

* Place respectively-matched forward and
backward operators together Q Expensive computation

Cheap computation

19



Challenge

3: Massive Number of Operators

* Number of operators 1 = Placement time

* E.g., 4-layer GNMT

e 22,340 operators = 7-minute placement time

> Operator Fusion

* Fuse operators that are directly connected and
in the same co-placement group

group: step

group: weight group: weight

20



Challenge #3: Massive Number of Operators

* Number of operators 1 = Placement time

* E.g., 4-layer GNMT

e 22,340 operators = 7-minute placement time

> Operator Fusion

* Fuse operators that are directly connected and group: step
in the same co-placement group @
* May introduce cycles

* Checking all cycles — Expensive, Not scalable
e Conservative, local and so scalable heuristic

group: weight

21



Challenge

3: Massive Number of Operators

> Forward-Operator-based Placement

* Place ops by only considering forward ops

* Place backward ops as their corresponding forward
ops on the same device

* 4-layer GNMT

* # operators: 22,340 = 706
* Placement time: 7 minutes = 1.2 seconds

group: step

Update
Step

group: step

group: weight group: weight

22



Challenge #4: Different Network Architecture

* m-SCT and m-ETF assume parallel communication

* Environment with a constrained network
. .. Device O
* Only sequential communication is supported C )

e E.g., Indirect GPU-to-GPU communication

2 Sequential Communication Support
* Introduce device communication queues Device 1 Device 2

* Baechi planner automatically adds queuing time

e Support computation-communication overlap
* Cache received data to avoid duplicate transfers

23



Baechi-PT: Integrating Baechi into PyTorch

* That was for Baechi [J TensorFlow
* We also integrated Baechi [J PyTorch

* Challenges

e PyTorch has modules (unlike TensorFlow’s operators which are fine-grained)
* PyTorch Developers need to specify communication programmatically

* Baechi-PT integration addresses this by

1. Co-placement of subgraphs of modules that are common design patterns in the model
2. Annotating tensors for backpropagation

3. An automated wrapper-based communication protocol (leverages CUDA streams for both
computation and communication)

24



How Long Does It Take to Place? (Placement
Time)

* 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication

e Baechi-TensorFlow

Model HierarchicalRL [34] Placeto [2] Baechi (m-SCT)

Inception-V3 11 hrs 50 mins 1 hr 49 mins 1-10 seconds
NMT (GNMT) 1 day 21 hrs 14 mins 2 days 20 hrs 40 mins  1.2-48 seconds

Inception-V3: GNMT:

654x—42.6Kx Speedup 3392x-206Kx Speedup
over RL over RL

(Excludes profiling time, which was 10-12 s for the entire model)

25



How Fast Are Placed Models (Step Times)?

— Speedup over

Single GPU Expert (4 GPUs)

Batch Single

Model Size  GPU m-TOPQ| | m-ETH | m-SCT| m-ETF m-SCT |m-ETF | n-SCT

Inceptionvs 32 0269 [0269 || 0286 || 0269 0269 0.00% (1 GEU Expert)

3 64 0491 J0491 || 0521 || 0.491 || 0.491 0.00% (1 GEU Expert)
= GNMT 128 0251 0214 || 0.265 || 0224 0212 | 121% 184% | -45% | |0.9%
o (length:40) 256 0474 0376 || 0481 || 0354|| 0369 | 33.9% 285% | 6.2% ||1.9%
[qf, GNMT 128 0319 0259 || 0348 || 0264 )| 0267 | 209% 195% | -1.9% | |-3.0%
(length: 50) 256  0.618 || 0.484 || 0.609 || 0502|| 0516 | 23.1% 198% | -3.6% | |-6.2%

= Inceptionvs 2 0240 J0240 1| 0274 || 0241 0241 0.00% (1 GEU Expert)

8 64 0461 Jo0461 || 0537 || 0.465|| 0.462 0.00% (1 GEU Expert)
&  Transformer 64  0.249 |0257 || 0262 || 0242 || 0244 | 29%  20% | 62% ||53%
A (length:50) 128 0465 |0.462 || 0466 || 0451|| 0453 | 3.0%  26% | 24% ||2.0%

m-TOPO: m-ETF m-SCT
up to 34% higher than expert -4.5% t0 6.2% speedup -6.2% to 5.3% speedup

26




How Effective are the Optimizations?

* m-SCT in Baechi-TensorFlow

« All optimizations applied Number of Operators:
96.8%—-99.8% Reduction

Un-Optimized Optimized

Model Placement . |Placement|| Step
Ops | (seconds) (seconds) || (seconds) Placement times:
Inception-V3 | 6884 68.0 0.9 0.269 :
75.6x—229.3x Speedu
ol 275.1 1.2 0.212 p p

(length: 40) | 18050

GNMT
(length: 50)

406.1 24 0.267

Step times:

1.1x-3.0x Speedup

27



Baechi-Parallel and -Inspired Takeaways

e Other Algorithmic Model Parallelism Approaches

» (concurrent with Baechi, though standalone) Jakub Tarnawski, Amar Phanishayee, Nikhil Devanur,
Divya Mahajan, and Fanny Nina Paravecino, “Efficient Algorithms for Device Placement of DNN
Graph Operators,” NeurlPS 2020.

* (inspired by Baechi) Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. 2021, Towards
Optimal Placement and Scheduling of DNN Operations with Pesto, Middleware 2021

» Other related works that came afterward: Megatron-LM and Terapipe (for Transformers), Pipedream
(Pipeline parallelism), Alpa & Unity (combining different parallelisms)

28



Lessons Learned: Using RL vs. Using
Algorithms

* RL approaches need retraining when one changes the setup (scale), devices, or
model

 Algorithmic approaches are more generalizable

* Designing good algorithms can be hard, but sometimes easier than one expects!
(especially if one reads the literature)

e Adapting an algorithm into a system is non-trivial.
* Baechi TensorFlow took 1-2 person years, led by one determined graduate student
» Baechi PyTorch was tough (0.6 person years), faster because of our previous TF experience

e But the rewards are worth it!

* Creativity and Determination >> massive resources at FAANG companies

29



Lessons Learned (2): Hammer vs. Gavel

* Not indiscriminate: Using the RL/DNN Hammer for systems problems should be selective

* Parallel Design: DNN development and Algorithm development should occur in parallel,
rather than “either or”

* Concurrent at Run-time: Many scenarios where algo can give you a quick solution, and
DNN can help customize it (or vice versal)

* Papers using DNN must explicitly explain
* Alternative algorithmic designs explored
 Why those didn’t work
 Why ML is a good match for this problem
* Compare DNN to best-known algorithms

(or heuristics)

* “Simplicity is the ultimate sophistication.” — Lao Tzu
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