
Hammer or Gavel?

Indranil Gupta

Professor, CS, University of Illinois at Urbana Champaign

(Joint work with students Beomyeol Jeon†, Linda Cai*, Chirag Shetty†, Pallavi Srivastava⋄, Jintao Jiang‡, Xiaolan Ke†, Yitao
Meng†, Cong Xie**

†UIUC, *Princeton University, ⋄Microsoft, ‡UCLA, **ByteDance

Applications of DNNs to Systems Problems

• “When you have a hammer, everything looks like a nail” – Abraham
Maslow/Abraham Kaplan /Mark Twain

1

Some Real Reasons Companies Throw DNNs
at a Problem

• Simple models often work well

• They have the datacenter resources

• They have the data

• You don’t have to be (that) creative and design an algorithm

• Many (not all) in industry production teams…prefer not to read papers

• “Something will work!”

• And yet…
• Anecdotal evidence: “DNNs have high accuracy in papers, but if you get
25% accuracy from them in real life, consider yourself lucky!”
• Dangerous if applying DNNs to solving systems problems!

• Nevertheless, DNNs are useful for a variety of data processing

applications

• Applying DNNs to systems problems needs a rethink 2

Two “Simple” DNN
Models

3

ColocRL (Google), ICML 2017

HierarchicalRL (Google), ICLR 2018

Case Study

• Our project on the problem of “Model Parallelism of DNNs”

• Key Problem: Model Parallelism == Split a DNN model graph (for training) across
multiple devices (GPUs) to satisfy memory constraints

4

Why? ML Model sizes outpacing memory

5

[Julien Simon Blog
huggingface.co]

[statista.com]

Why Model Parallelism?

• Even 32GB GPU insufficient for > 1.3 B parameters

• GPUs used in AWS, Google Cloud, and Azure

• ML training on memory-constrained devices

Key Problem: Model Parallelism ==
Split a model graph (for training) across
devices (GPUs) to satisfy memory constraints

GPU P4 M60 K80 P100 T4 AWS
Graviton

V100 A10G A100

Memory 8 GB 8 GB 12 GB 12/16 GB 16 GB 16 GB 16/32 GB 24 GB 40 GB

6

ML Model
Graph

Approach 1/3: DIY (By hand)

•Expert-designed Approach
•Developer does placement manually
•E.g., Google Neural Machine Translation (GNMT), Inception-v3
☹ High placement time: Require domain knowledge and
significant manual efforts
☺ Low step times (of placed model)

7

Approach 2/3:
DNNs to the Rescue!...?
☺ Learning-based Approaches to Placement

• Use Reinforcement learning (RL)

• ColocRL [ICML 2017] (Google)

• HierarchicalRL [ICLR 2018] (Google)

• Placeto [NeurIPS 2019] (MIT)

☺ Low step times (of placed models) comparable to expert placements

☹ Require very long placement time to place ML models (2 hours ∼ 3 days)
• Using Placeto on NMT models took 68.67 hours (2.86 days).

☹ Require re-training on different ML models and varying environment

8

Approach 3/3: Magic!

• Transformative!

• Radical!!

• Unthinkable in decades before!!!

•☺
• Our new approach: Baechi [SoCC 2020]

• (“Baechi” = Korean word for placement)

9

Baechi’s “radical” idea…
Old-fashioned Algorithms

• DNN = Just a task precedence/dependency graph

• Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. 1989.
Scheduling Precedence Graphs in Systems with Interprocessor Communication
Times. SIAM Jornal on Computing 18, 2 (1989), 244–257.
• ETF Placement Algorithm: Earliest Task First

• Claire Hanen and Alix Munier. 1995. An Approximation Algorithm for Scheduling
Dependent Tasks on m Processors with Small Communication Delays. In 4th
INRIA/IEEE Symposium on Emerging Technologies and Factory Automation (ETFA
'95), Vol. 1. IEEE, 167–189.
• SCT Placement Algorithm: Small Communication Time

10

 • Earliest Task First (ETF)
• Schedule an operator with earliest schedulable time

on its corresponding device first

• Assumes Infinite memory

• In example: op_number

compute time (memory)

Device 0

Classical ETF

11

Memory: 7

Memory: 3

Execution time: 13

Device 0

Device 1

Device 1

Device 2

Hwang et al. Scheduling Precedence Graphs in Systems with Interprocessor
 Communication Times. SIAM Journal on Computing, 18(2)

Device 1

 • Earliest Task First (ETF)
• Schedule an operator with earliest schedulable time

on its corresponding device first

• Assumes Infinite memory

• Our modified version: m-ETF
• What if device memory limit is 5?

• Exclude devices with insufficient memory
from placement

Device 0

Device 1

1. m-ETF: Baechi’s Memory constrained ETF

12

Device 0

Device 1

Device 1

Device 2

Device 1

Memory: 7 ⇒
5

Memory: 3 ⇒
5

Execution time: 13 ⇒ 14

OOM

Classical SCT

• Small Communication Time (SCT)
• Find operator’s favorite child (via ILP) and

schedule it on the same device as parent

Theorem (Old). SCT’s execution time has a constant
approximation ratio with respect to the optimal execution
time*.

* Conditions apply 13

Device 1

Memory: 6

Memory: 4

Execution time: 11

Device 0

Device 0Device 1

Device 1

Device 2

Hanen and Munier. An Approximation Algorithm for Scheduling Dependent
 Tasks on m Processors with Small Communication Delays. ETFA ‘95

2. m-SCT: Baechi’s Memory constrained SCT

• Small Communication Time (SCT)
• Find operator’s favorite child (via ILP) and

schedule it on the same device as parent

• Our modified version: m-SCT
• Determine favorite child via relaxed ILP

(integer 🡪 values in [0,1], and later round
up/down). Solved by interior point method.

• Exclude devices with insufficient memory
from placement

• Each device memory limit is 5

14

Device 1

Memory: 6 ⇒
5

Memory: 4 ⇒
5

Device 0

Device 0Device 1

Device 1

Device 2

Device 1

Theorem (New). m-SCT’s execution time has a
constant approximation ratio with respect to the
optimal execution time*. Execution time: 11 ⇒ 14

OOM

From an Algorithm to a System

• We can prove that these m-SCT(m-ETF) algorithms are within a constant factor of
optimal.

• (Believe it or not, this was the easy part.)

• We implemented them into TensorFlow (1.12). Alas:
• Generated placement results were infeasible

• Performance was awful

15

Challenges #1: TensorFlow Colocation
Constraints
• TensorFlow requires some operators to be

colocated

group: weightgroup: weight

group: step

group: step

Device 0

Device 0

Device 0Device 2

Device 1 Device 2

Device 2Device 1 Device 1

16

Challenges #1: TensorFlow Colocation
Constraints
• TensorFlow requires some operators to be

colocated

⇨ Tried post-adjust placement
• Fix colocation-unaware placement to satisfy the

colocation constraints (tried 3 different ways)

• Inconsistent performance gain

⇨ Co-adjust placement
• Consider colocations while creating schedule

• 1st operator in a group placed ⇒
other ops in the group placed on the same device

group: weightgroup: weight

group: step

group: step

Device 0

Device 0

Device 0Device 2

Device 1 Device 2

Device 2Device 1 Device 1 Device 0

Device 1

17

Challenge #2: Communication Blowup

• Splitting an ML model graph

 ⇒ Communication ↑

 ⇒ Step time ↑

18

Device 0

Device 1 Device 2

Device 0 Device 0 Device 0

Expensive computation

Cheap computation

Data Transfers

Challenge #2: Communication Blowup

• Splitting an ML model graph

 ⇒ Communication ↑

 ⇒ Step time ↑

⇨ Operator Co-placement
• Operator’s output is only used by its successor
⇒ Place them together

• Place respectively-matched forward and
backward operators together

19

Device 0

Device 1 Device 2

Device 0 Device 0 Device 0

Expensive computation

Cheap computation

Device 0 Device 0

Challenge #3: Massive Number of Operators

group: weightgroup: weight

group: step

group: step

• Number of operators ↑ ⟹ Placement time ↑

• E.g., 4-layer GNMT
• 22,340 operators ⟹ 7-minute placement time

⇨ Operator Fusion
• Fuse operators that are directly connected and

in the same co-placement group

20

Challenge #3: Massive Number of Operators

group: step

• Number of operators ↑ ⟹ Placement time ↑

• E.g., 4-layer GNMT
• 22,340 operators ⟹ 7-minute placement time

⇨ Operator Fusion
• Fuse operators that are directly connected and

in the same co-placement group

• May introduce cycles
• Checking all cycles – Expensive, Not scalable

• Conservative, local and so scalable heuristic

group: weight

Cycle

21

Challenge #3: Massive Number of Operators

⇨ Forward-Operator-based Placement
• Place ops by only considering forward ops

• Place backward ops as their corresponding forward
ops on the same device

• 4-layer GNMT
• # operators: 22,340 ⟹ 706

• Placement time: 7 minutes ⟹ 1.2 seconds

22

group: weightgroup: weight

group: step

group: step

Challenge #4: Different Network Architecture

• m-SCT and m-ETF assume parallel communication

• Environment with a constrained network
• Only sequential communication is supported

• E.g., Indirect GPU-to-GPU communication

⇨ Sequential Communication Support
• Introduce device communication queues

• Baechi planner automatically adds queuing time

• Support computation-communication overlap

• Cache received data to avoid duplicate transfers

Device 0

Device 1 Device 2

23

Baechi-PT: Integrating Baechi into PyTorch

• That was for Baechi 🡪 TensorFlow

• We also integrated Baechi 🡪 PyTorch

• Challenges
• PyTorch has modules (unlike TensorFlow’s operators which are fine-grained)

• PyTorch Developers need to specify communication programmatically

• Baechi-PT integration addresses this by
1. Co-placement of subgraphs of modules that are common design patterns in the model

2. Annotating tensors for backpropagation

3. An automated wrapper-based communication protocol (leverages CUDA streams for both
computation and communication)

24

• 4 NVIDIA RTX 2080 GPUs (8GB) with shared communication

• Baechi-TensorFlow

How Long Does It Take to Place? (Placement
Time)

Inception-V3:
654×–42.6K× Speedup
over RL

GNMT:
 3392×–206K× Speedup
over RL

25

(Excludes profiling time, which was 10-12 s for the entire model)

How Fast Are Placed Models (Step Times)?

m-TOPO:
up to 34% higher than expert

m-ETF
-4.5% to 6.2% speedup

26

m-SCT
-6.2% to 5.3% speedup

• m-SCT in Baechi-TensorFlow

• All optimizations applied

How Effective are the Optimizations?

Placement times:
75.6×–229.3× Speedup

Step times:
1.1×–3.0× Speedup

Number of Operators:
96.8%–99.8% Reduction

27

Baechi-Parallel and -Inspired Takeaways

• Other Algorithmic Model Parallelism Approaches
• (concurrent with Baechi, though standalone) Jakub Tarnawski, Amar Phanishayee, Nikhil Devanur,

Divya Mahajan, and Fanny Nina Paravecino, “Efficient Algorithms for Device Placement of DNN
Graph Operators,” NeurIPS 2020.

• (inspired by Baechi) Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. 2021, Towards
Optimal Placement and Scheduling of DNN Operations with Pesto, Middleware 2021

• Other related works that came afterward: Megatron-LM and Terapipe (for Transformers), Pipedream
(Pipeline parallelism), Alpa & Unity (combining different parallelisms)

28

Lessons Learned: Using RL vs. Using
Algorithms
• RL approaches need retraining when one changes the setup (scale), devices, or

model

• Algorithmic approaches are more generalizable

• Designing good algorithms can be hard, but sometimes easier than one expects!
(especially if one reads the literature)

• Adapting an algorithm into a system is non-trivial.
• Baechi TensorFlow took 1-2 person years, led by one determined graduate student

• Baechi PyTorch was tough (0.6 person years), faster because of our previous TF experience

• But the rewards are worth it!

• Creativity and Determination >> massive resources at FAANG companies

29

Lessons Learned (2): Hammer vs. Gavel

• Not indiscriminate: Using the RL/DNN Hammer for systems problems should be selective

• Parallel Design: DNN development and Algorithm development should occur in parallel,
rather than “either or”

• Concurrent at Run-time: Many scenarios where algo can give you a quick solution, and
DNN can help customize it (or vice versa!)

• Papers using DNN must explicitly explain
• Alternative algorithmic designs explored
• Why those didn’t work
• Why ML is a good match for this problem
• Compare DNN to best-known algorithms

(or heuristics)

• “Simplicity is the ultimate sophistication.” – Lao Tzu

30

