A Non-parametric View of FedAvg and FedProx: Beyond Stationary Points

Lili Su

Department of Electrical and Computer Engineering Northeastern University

Joint work with Jiaming Xu (Duke) and Pengkun Yang (Tsinghua)

> PoDL, Oct, 2023

Modern data generation and collection

- Machine learning at the edge (ML@Edge)
- Enabling technologies: edge devices + 5G

Modern data generation and collection

- Machine learning at the edge (ML@Edge)
- Enabling technologies: edge devices + 5G
 - Privacy-preserving distributed machine learning

Federated learning

Example: Gboard (Google keyboard) [HRM+18]

• Data privacy: training models without seeing your data

Federated learning

Example: Gboard (Google keyboard) [HRM+18]

- Data privacy: training models without seeing your data
- Caveat: information leakage from model update!
 - This is unavoidable from an information theory prospective.

• Massive scale

- Massive scale
 - \rightarrow communication bottleneck

- Massive scale
 - \rightarrow communication bottleneck
 - \rightarrow communication-saving algorithms cause distortion

- Massive scale
 - \rightarrow communication bottleneck
 - \rightarrow communication-saving algorithms cause distortion
- Heterogeneity
 - Data distribution
 - Data volume
- Unreliable communication: connection and/or availability

- Massive scale
 - \rightarrow communication bottleneck
 - \rightarrow communication-saving algorithms cause distortion
- Heterogeneity
 - $\circ~$ Data distribution
 - Data volume
- Unreliable communication: connection and/or availability

For every communication round

- Parameter server (PS) broadcast latest model
- Clients update model based on local data
 - \circ **FedAvg** [MMR+17]: run *s* steps of local gradient descent
 - FedProx [LSZ+20]: solve a local program with a proximal term
- PS aggregates updated models from clients

For every communication round

- Parameter server (PS) broadcast latest model
- Clients update model based on local data
 - \circ **FedAvg** [MMR+17]: run *s* steps of local gradient descent
 - FedProx [LSZ+20]: solve a local program with a proximal term
- PS aggregates updated models from clients

Many others FL algorithms: SCAFFOLD[κκm+20], FedNova[WLL+20], FedSplit[PW20], FedPD[ZHD+21] ...

Linear regression: client *i* holds local dataset (X_i, y_i)

$$X_i \in \mathbb{R}^{n_i \times d}, \quad y_i \in \mathbb{R}^{n_i}$$

• Objective function of ordinary least squares (OLS):

$$\min_{\theta} f(\theta) \triangleq \sum_{i=1}^{M} \|y_i - X_i\theta\|^2$$

Linear regression: client *i* holds local dataset (X_i, y_i)

$$X_i \in \mathbb{R}^{n_i \times d}, \quad y_i \in \mathbb{R}^{n_i}$$

• Objective function of ordinary least squares (OLS):

$$\min_{\theta} f(\theta) \triangleq \sum_{i=1}^{M} \|y_i - X_i\theta\|^2$$

• Closed form solution

$$\hat{\theta}_{\text{OLS}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^{\top} X_i\right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} X_i^{\top} y_i\right)$$

• For linear regression [Pathak-Wainwright'20]

$$\hat{\theta}_{\text{FedAvg}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^{\top} X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^{\top} X_i)^{\ell}\right)^{-1}$$
$$\left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^{\top} X_i)^{\ell} X_i^{\top} y_i\right)$$
$$\hat{\theta}_{\text{FedProx}} = \left(I - \frac{1}{M} \sum_{i=1}^{M} (I + \eta X_i^{\top} X_i)^{-1}\right)^{-1}$$
$$\left(\frac{\eta}{M} \sum_{i=1}^{M} (I + \eta X_i^{\top} X_i)^{-1} X_i^{\top} y_i\right)$$

• For linear regression [Pathak-Wainwright'20]

$$\hat{\theta}_{\text{FedAvg}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^{\top} X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^{\top} X_i)^{\ell}\right)^{-1}$$
$$\left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^{\top} X_i)^{\ell} X_i^{\top} y_i\right)$$
$$\hat{\theta}_{\text{FedProx}} = \left(I - \frac{1}{M} \sum_{i=1}^{M} (I + \eta X_i^{\top} X_i)^{-1}\right)^{-1}$$
$$\left(\frac{\eta}{M} \sum_{i=1}^{M} (I + \eta X_i^{\top} X_i)^{-1} X_i^{\top} y_i\right)$$

• Failure of reaching stationary points: $\hat{\theta}_{\text{Fed}} \neq \hat{\theta}_{\text{OLS}}$

• For linear regression [Pathak-Wainwright'20]

$$\hat{\theta}_{\text{FedAvg}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^{\top} X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^{\top} X_i)^{\ell}\right)^{-1}$$
$$\left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^{\top} X_i)^{\ell} X_i^{\top} y_i\right)$$
$$\hat{\theta}_{\text{FedProx}} = \left(I - \frac{1}{M} \sum_{i=1}^{M} (I + \eta X_i^{\top} X_i)^{-1}\right)^{-1}$$
$$\left(\frac{\eta}{M} \sum_{i=1}^{M} (I + \eta X_i^{\top} X_i)^{-1} X_i^{\top} y_i\right)$$

- Failure of reaching stationary points: $\hat{\theta}_{\text{Fed}} \neq \hat{\theta}_{\text{OLS}}$
- Many attempts to fix the optimization gap [KKM+20, PW20, GHR21,...]

Theory behind practice

Question

Do they really fail? In many applications, FedAvg and FedProx work quite well, despite the theoretical gap.

Theory behind practice

Question

Do they really fail? In many applications, FedAvg and FedProx work quite well, despite the theoretical gap.

• Model: $y_i = X_i \theta^* + \xi_i$

Question

Do they really fail? In many applications, FedAvg and FedProx work quite well, despite the theoretical gap.

• Model:
$$y_i = X_i \theta^* + \xi_i$$

Question

Do they really fail? In many applications, FedAvg and FedProx work quite well, despite the theoretical gap.

• Model:
$$y_i = X_i \theta^* + \xi_i$$

Question

Do they really fail? In many applications, FedAvg and FedProx work quite well, despite the theoretical gap.

• Model:
$$y_i = X_i \theta^* + \xi_i$$

• Why FedAvg and FedProx can achieve low estimation errors despite their failure of reaching stationary points?

$$\hat{\theta}_{\text{OLS}} = \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}X_{i}\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}y_{i}\right)$$
Plugging the model $y_{i} = X_{i}\theta^{*} + \xi_{i}$

$$\Rightarrow \hat{\theta}_{\text{OLS}} = \theta^{*} + \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}X_{i}\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}\xi_{i}\right)$$

$$\hat{\theta}_{\text{OLS}} = \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}X_{i}\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}y_{i}\right)$$
Plugging the model $y_{i} = X_{i}\theta^{*} + \xi_{i}$

$$\Rightarrow \hat{\theta}_{\text{OLS}} = \theta^{*} + \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}X_{i}\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^{M}X_{i}^{\top}\xi_{i}\right)$$

Similarly, for $\hat{ heta}_{\rm FedAvg}$ and $\hat{ heta}_{\rm FedProx}$.

Plugging the model $y_i = X_i \theta^* + \xi_i$:

$$\hat{\theta}_{\text{OLS}} = \theta^* + \left(\frac{1}{M}\sum_{i=1}^M X_i^\top X_i\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^M X_i^\top \xi_i\right)$$
$$\hat{\theta}_{\text{FedAvg}} = \theta^* + \left(\frac{1}{M}\sum_{i=1}^M X_i^\top X_i\sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell\right)^{-1}$$
$$\left(\frac{1}{M}\sum_{i=1}^M \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell X_i^\top \xi_i\right)$$

Plugging the model $y_i = X_i \theta^* + \xi_i$:

$$\hat{\theta}_{\text{OLS}} = \theta^* + \left(\frac{1}{M}\sum_{i=1}^M X_i^\top X_i\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^M X_i^\top \xi_i\right)$$
$$\hat{\theta}_{\text{FedAvg}} = \theta^* + \left(\frac{1}{M}\sum_{i=1}^M X_i^\top X_i\sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell\right)^{-1}$$
$$\left(\frac{1}{M}\sum_{i=1}^M \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell X_i^\top \xi_i\right)$$

Observation

Both (and also FedProx) are unbiased estimator of θ^* with different variances.

-1

Plugging the model $y_i = X_i \theta^* + \xi_i$:

$$\hat{\theta}_{\text{OLS}} = \theta^* + \left(\frac{1}{M}\sum_{i=1}^M X_i^\top X_i\right)^{-1} \left(\frac{1}{M}\sum_{i=1}^M X_i^\top \xi_i\right)$$
$$\hat{\theta}_{\text{FedAvg}} = \theta^* + \left(\frac{1}{M}\sum_{i=1}^M X_i^\top X_i\sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell\right)^{-1}$$
$$\left(\frac{1}{M}\sum_{i=1}^M \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell X_i^\top \xi_i\right)$$

Observation

All Roads Lead to Rome !!!

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M]$,

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \dots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M]$,

 $y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \dots, n_i$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points **Algorithm:** at communication round t

• Parameter server (PS) broadcast f_{t-1}

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M]$,

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \dots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points Algorithm: at communication round t

- Parameter server (PS) broadcast f_{t-1}
- Local update $f_{i,t}$ based on empirical risk function

$$\ell_i(f) = \frac{1}{2n_i} \sum_{j=1}^{n_i} (f(x_{ij}) - y_{ij})^2$$

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M]$,

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \dots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points Algorithm: at communication round t

- Parameter server (PS) broadcast f_{t-1}
- Local update $f_{i,t}$ based on empirical risk function

$$\ell_i(f) = \frac{1}{2n_i} \sum_{j=1}^{n_i} (f(x_{ij}) - y_{ij})^2$$

Global update by model averaging

$$f_t = \sum_{i=1}^M w_i f_{i,t}, \quad w_i = n_i / N$$

FedAvg: one-step local gradient descent $\mathcal{G}_i(f) = f - \eta \nabla \ell_i(f)$

$$f_{i,t} = \mathcal{G}_i^s(f_{t-1}) \triangleq (\underbrace{\mathcal{G}_i \circ \cdots \circ \mathcal{G}_i}_{s \text{ times}})(f_{t-1})$$

FedProx:

$$f_{i,t} = \arg\min_{f \in \mathcal{H}} \ \ell_i(f) + \frac{1}{2\eta} \|f - f_{t-1}\|_{\mathcal{H}}^2$$

Representer in RKHS: $k_x = k(\cdot, x)$. Let $(K_x)_{ij} = \frac{1}{N}k(x_i, x_j)$ be the normalized Gram matrix. Representer in RKHS: $k_x = k(\cdot, x)$. Let $(K_x)_{ij} = \frac{1}{N}k(x_i, x_j)$ be the normalized Gram matrix.

Proposition (Su-Xu-Yang '23)

$$f_t(\mathbf{x}) = [I - \eta K_{\mathbf{x}} P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}} P y,$$

where $P \in \mathbb{R}^{N \times N}$ is a block-diagonal matrix whose *i*-th diagonal block of size $n_i \times n_i$ is

$$P_{ii} = \begin{cases} \sum_{\tau=0}^{s-1} [I - \eta K_{\mathbf{x}_i}]^{\tau} & \text{ for FedAvg,} \\ [I + \eta K_{\mathbf{x}_i}]^{-1} & \text{ for FedProx.} \end{cases}$$

Representer in RKHS: $k_x = k(\cdot, x)$. Let $(K_x)_{ij} = \frac{1}{N}k(x_i, x_j)$ be the normalized Gram matrix.

Proposition (Su-Xu-Yang '23)

$$f_t(\mathbf{x}) = [I - \eta K_{\mathbf{x}} P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}} P y,$$

where $P \in \mathbb{R}^{N \times N}$ is a block-diagonal matrix whose *i*-th diagonal block of size $n_i \times n_i$ is

$$P_{ii} = \begin{cases} \sum_{\tau=0}^{s-1} [I - \eta K_{\mathbf{x}_i}]^{\tau} & \text{ for FedAvg,} \\ [I + \eta K_{\mathbf{x}_i}]^{-1} & \text{ for FedProx.} \end{cases}$$

Key analysis challenge: eigenvalues of $I - \eta K_x P$ (asymmetric)

$$f_t(\mathbf{x}) = \mathcal{L}f_{t-1}(\mathbf{x}) + \Psi(\mathbf{x})y$$

= $[I - \eta K_{\mathbf{x}}P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}}Py$

$$f_t(\mathbf{x}) = \mathcal{L}f_{t-1}(\mathbf{x}) + \Psi(\mathbf{x})y$$

= $[I - \eta K_{\mathbf{x}}P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}}Py$

For FedAvg:

•
$$\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^{\tau} k_{\mathbf{x}_1}, \dots, \mathcal{L}_M^{\tau} k_{\mathbf{x}_M})$$
$$\mathcal{L}_i k_{\mathbf{x}_i} = (I - \eta K_{\mathbf{x}_i}) k_{\mathbf{x}_i} \quad \text{(kernel method)}$$

$$f_t(\mathbf{x}) = \mathcal{L}f_{t-1}(\mathbf{x}) + \Psi(\mathbf{x})y$$

= $[I - \eta K_{\mathbf{x}}P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}}Py$

For FedAvg:

•
$$\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^{\tau} k_{\mathbf{x}_1}, \dots, \mathcal{L}_M^{\tau} k_{\mathbf{x}_M})$$
$$\mathcal{L}_i k_{\mathbf{x}_i} = (I - \eta K_{\mathbf{x}_i}) k_{\mathbf{x}_i} \quad \text{(kernel method)}$$
$$\Longrightarrow \mathcal{L}_i^{\tau} k_{\mathbf{x}_i} = (I - \eta K_{\mathbf{x}_i})^{\tau} k_{\mathbf{x}_i}$$

$$f_t(\mathbf{x}) = \mathcal{L}f_{t-1}(\mathbf{x}) + \Psi(\mathbf{x})y$$

= $[I - \eta K_{\mathbf{x}}P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}}Py$

For FedAvg:

•
$$\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^{\tau} k_{\mathbf{x}_1}, \dots, \mathcal{L}_M^{\tau} k_{\mathbf{x}_M})$$
$$\mathcal{L}_i k_{\mathbf{x}_i} = (I - \eta K_{\mathbf{x}_i}) k_{\mathbf{x}_i} \quad \text{(kernel method)}$$
$$\Longrightarrow \mathcal{L}_i^{\tau} k_{\mathbf{x}_i} = (I - \eta K_{\mathbf{x}_i})^{\tau} k_{\mathbf{x}_i}$$
$$\Longrightarrow \Psi(\mathbf{x}) = \eta K_{\mathbf{x}} P$$

$$f_t(\mathbf{x}) = \mathcal{L}f_{t-1}(\mathbf{x}) + \Psi(\mathbf{x})y$$

= $[I - \eta K_{\mathbf{x}}P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}}Py$

For FedAvg:

•
$$\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_{1}^{\tau} k_{\mathbf{x}_{1}}, \dots, \mathcal{L}_{M}^{\tau} k_{\mathbf{x}_{M}})$$
$$\mathcal{L}_{i} k_{\mathbf{x}_{i}} = (I - \eta K_{\mathbf{x}_{i}}) k_{\mathbf{x}_{i}} \quad \text{(kernel method)}$$
$$\Longrightarrow \mathcal{L}_{i}^{\tau} k_{\mathbf{x}_{i}} = (I - \eta K_{\mathbf{x}_{i}})^{\tau} k_{\mathbf{x}_{i}}$$
$$\Longrightarrow \Psi(\mathbf{x}) = \eta K_{\mathbf{x}} P$$

• Telescoping sum

$$f - \mathcal{L}_{i}^{s} f = \sum_{\tau=0}^{s-1} \mathcal{L}_{i}^{\tau} f - \mathcal{L}_{i}^{\tau+1} f = \sum_{\tau=0}^{s-1} \mathcal{L}_{i}^{\tau} \left(\frac{\eta}{n_{i}} \sum_{j=1}^{n_{i}} f(x_{ij}) k_{x_{ij}} \right)$$

$$f_t(\mathbf{x}) = \mathcal{L}f_{t-1}(\mathbf{x}) + \Psi(\mathbf{x})y$$
$$= [I - \eta K_{\mathbf{x}}P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}}Py$$

For FedAvg:

•
$$\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_{1}^{\tau} k_{\mathbf{x}_{1}}, \dots, \mathcal{L}_{M}^{\tau} k_{\mathbf{x}_{M}})$$
$$\mathcal{L}_{i} k_{\mathbf{x}_{i}} = (I - \eta K_{\mathbf{x}_{i}}) k_{\mathbf{x}_{i}} \quad \text{(kernel method)}$$
$$\Longrightarrow \mathcal{L}_{i}^{\tau} k_{\mathbf{x}_{i}} = (I - \eta K_{\mathbf{x}_{i}})^{\tau} k_{\mathbf{x}_{i}}$$
$$\Longrightarrow \Psi(\mathbf{x}) = \eta K_{\mathbf{x}} P$$

• Telescoping sum

$$f - \mathcal{L}_i^s f = \sum_{\tau=0}^{s-1} \mathcal{L}_i^\tau f - \mathcal{L}_i^{\tau+1} f = \sum_{\tau=0}^{s-1} \mathcal{L}_i^\tau \left(\frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}} \right)$$
$$\implies f(\mathbf{x}) - \mathcal{L}f(\mathbf{x}) = \Psi(\mathbf{x}) f(\mathbf{x}) = \eta K_{\mathbf{x}} P f(\mathbf{x})$$

Key: eigenvalues of $I - \eta K_x P$ (asymmetric)

Key: eigenvalues of $I - \eta K_{\mathbf{x}} P$ (asymmetric)

• Analysis similar to graph Laplacians:

eigenvalues of $K_{\mathbf{x}}P \Leftrightarrow$ eigenvalues of $P^{1/2}K_{\mathbf{x}}P^{1/2}$

Key: eigenvalues of $I - \eta K_{\mathbf{x}} P$ (asymmetric)

• Analysis similar to graph Laplacians:

eigenvalues of $K_{\mathbf{x}}P \Leftrightarrow$ eigenvalues of $P^{1/2}K_{\mathbf{x}}P^{1/2}$

• Stability:

 $\gamma \triangleq \eta \max_{i \in [M]} \|K_{\mathbf{x}_i}\| < 1 \implies \text{eigenvalues of } I - \eta K_{\mathbf{x}} P \in [0, 1]$

Key: eigenvalues of $I - \eta K_x P$ (asymmetric)

• Analysis similar to graph Laplacians:

eigenvalues of $K_{\mathbf{x}}P \Leftrightarrow$ eigenvalues of $P^{1/2}K_{\mathbf{x}}P^{1/2}$

• Stability:

$$\gamma \triangleq \eta \max_{i \in [M]} \|K_{\mathbf{x}_i}\| < 1 \implies \text{ eigenvalues of } I - \eta K_{\mathbf{x}} P \in [0, 1]$$

• Condition number of *P*:

$$\|P\| \left\| P^{-1} \right\| \le \kappa \triangleq \begin{cases} \frac{\gamma s}{1 - (1 - \gamma)^s} & \text{for FedAvg,} \\ 1 + \gamma & \text{for FedProx.} \end{cases}$$

$$f_t(\mathbf{x}) = [I - \eta K_{\mathbf{x}} P] f_{t-1}(\mathbf{x}) + \eta K_{\mathbf{x}} P y,$$

• Convergence in either RKHS norm or the $L^2(\mathbb{P}_N)$ norm

$$\|f_t - f\|_N^2 \triangleq \frac{1}{N} \sum_{i=1}^M \sum_{j=1}^{n_i} (f_t(x_{ij}) - f(x_{ij}))^2$$

- Explicit characterization of bias, variance, and heterogeneity
 - Covariate heterogeneity (a.k.a. covariate shift)
 - Response heterogeneity (a.k.a. concept shift)
 - Unbalanced data volume (a.k.a. quantity skew)

For any $f \in \mathcal{H}$, $1 \leq t \leq T$,

$$\mathbb{E}_{\xi}[\|f_t - f\|_N^2] \le \frac{3\kappa}{2e\eta ts} \left(\|f_0 - f\|_{\mathcal{H}}^2 + 1\right) + \frac{3\kappa}{N} \|\Delta_f\|^2,$$

where T is a carefully chosen stopping time, and $\Delta_f = (f_1^*(\mathbf{x}_1), f_2^*(\mathbf{x}_2), \cdots, f_M^*(\mathbf{x}_M)) - f(\mathbf{x}).$

For any $f \in \mathcal{H}$, $1 \leq t \leq T$,

$$\mathbb{E}_{\xi}[\|f_t - f\|_N^2] \le \frac{3\kappa}{2e\eta ts} \left(\|f_0 - f\|_{\mathcal{H}}^2 + 1\right) + \frac{3\kappa}{N} \|\Delta_f\|^2,$$

where T is a carefully chosen stopping time, and $\Delta_f = (f_1^*(\mathbf{x}_1), f_2^*(\mathbf{x}_2), \cdots, f_M^*(\mathbf{x}_M)) - f(\mathbf{x}).$

• Recover centralized rate (with $f_i^* = f^*$) [Raskutti-Wainwright-Yu'14]

For any $f \in \mathcal{H}$, $1 \leq t \leq T$,

$$\mathbb{E}_{\xi}[\|f_t - f\|_N^2] \le \frac{3\kappa}{2e\eta ts} \left(\|f_0 - f\|_{\mathcal{H}}^2 + 1\right) + \frac{3\kappa}{N} \|\Delta_f\|^2,$$

where T is a carefully chosen stopping time, and $\Delta_f = (f_1^*(\mathbf{x}_1), f_2^*(\mathbf{x}_2), \cdots, f_M^*(\mathbf{x}_M)) - f(\mathbf{x}).$

- Recover centralized rate (with $f_i^* = f^*$) [Raskutti-Wainwright-Yu'14]
- Example: polynomial decay $\lambda_i \lesssim i^{-2\beta}$ for $\beta > 1/2$

Error rate: $(\sigma^2/N)^{2\beta/(2\beta+1)}$

For any $f \in \mathcal{H}$, $1 \leq t \leq T$,

$$\mathbb{E}_{\xi}[\|f_t - f\|_N^2] \le \frac{3\kappa}{2e\eta ts} \left(\|f_0 - f\|_{\mathcal{H}}^2 + 1\right) + \frac{3\kappa}{N} \|\Delta_f\|^2,$$

where T is a carefully chosen stopping time, and $\Delta_f = (f_1^*(\mathbf{x}_1), f_2^*(\mathbf{x}_2), \cdots, f_M^*(\mathbf{x}_M)) - f(\mathbf{x}).$

- Recover centralized rate (with $f_i^* = f^*$) [Raskutti-Wainwright-Yu'14]
- Example: polynomial decay $\lambda_i \lesssim i^{-2\beta}$ for $\beta > 1/2$

Error rate: $(\sigma^2/N)^{2\beta/(2\beta+1)}$

• Minimax $L^2(\mathbb{P})$ rate with iid data (empirical process theory)

Suppose kernel k is of rank d. Then

$$\mathbb{E}_{\xi}\left[\left\|f_{t}-\bar{f}\right\|_{\mathcal{H}}^{2}\right] \leq \left(1-\frac{s\eta\lambda_{d}}{\kappa}\right)^{2t}\left\|f_{0}-\bar{f}\right\|_{\mathcal{H}}^{2}+\sigma^{2}\frac{\kappa d}{N\lambda_{d}},$$

where $\bar{f} = (\mathcal{I} - \mathcal{L})^{-1} ((f_1^*(\mathbf{x}_1), \dots, f_M^*(\mathbf{x}_M)) \cdot \Psi).$

• f_t converges exponentially to \bar{f} that balances out heterogeneity

Suppose kernel k is of rank d. Then

$$\mathbb{E}_{\xi}\left[\left\|f_{t}-\bar{f}\right\|_{\mathcal{H}}^{2}\right] \leq \left(1-\frac{s\eta\lambda_{d}}{\kappa}\right)^{2t}\left\|f_{0}-\bar{f}\right\|_{\mathcal{H}}^{2}+\sigma^{2}\frac{\kappa d}{N\lambda_{d}},$$

where $\bar{f} = (\mathcal{I} - \mathcal{L})^{-1} ((f_1^*(\mathbf{x}_1), \dots, f_M^*(\mathbf{x}_M)) \cdot \Psi)$.

- f_t converges exponentially to \bar{f} that balances out heterogeneity
- When $\lambda_d=\Omega(1),$ the estimation error is O(d/N) and minimax-optimal

Suppose kernel k is of rank d. Then

$$\mathbb{E}_{\xi}\left[\left\|f_{t}-\bar{f}\right\|_{\mathcal{H}}^{2}\right] \leq \left(1-\frac{s\eta\lambda_{d}}{\kappa}\right)^{2t}\left\|f_{0}-\bar{f}\right\|_{\mathcal{H}}^{2}+\sigma^{2}\frac{\kappa d}{N\lambda_{d}},$$

where $\bar{f} = (\mathcal{I} - \mathcal{L})^{-1} ((f_1^*(\mathbf{x}_1), \dots, f_M^*(\mathbf{x}_M)) \cdot \Psi)$.

- f_t converges exponentially to \bar{f} that balances out heterogeneity
- When $\lambda_d = \Omega(1)$, the estimation error is O(d/N) and minimax-optimal
- We further show \bar{f} stays within bounded distance to f_i^* .

• \hat{f}_j is an estimator based on the local data

$$R_j^{\mathsf{Loc}} = \inf_{\hat{f}_j} \sup_{f_j^*} \mathbb{E}_{\mathbf{x}_j, \xi_j} \|\hat{f}_j - f_j^*\|_{\mathcal{H}}^2$$

• \hat{f}_j is an estimator based on the local data

$$R_j^{\mathsf{Loc}} = \inf_{\hat{f}_j} \sup_{f_j^*} \mathbb{E}_{\mathbf{x}_j, \xi_j} \|\hat{f}_j - f_j^*\|_{\mathcal{H}}^2$$

• f_t is the FL model after t rounds

$$R_j^{\mathsf{Fed}} = \inf_{t \ge 0} \sup_{f_j^* \in \mathcal{H}_B} \mathbb{E}_{\mathbf{x},\xi} \| f_t - f_j^* \|_{\mathcal{H}}^2,$$

• \hat{f}_j is an estimator based on the local data

$$R_j^{\mathsf{Loc}} = \inf_{\hat{f}_j} \sup_{f_j^*} \mathbb{E}_{\mathbf{x}_j, \xi_j} \| \hat{f}_j - f_j^* \|_{\mathcal{H}}^2$$

• f_t is the FL model after t rounds

$$R_j^{\mathsf{Fed}} = \inf_{t \ge 0} \sup_{f_j^* \in \mathcal{H}_B} \mathbb{E}_{\mathbf{x},\xi} \| f_t - f_j^* \|_{\mathcal{H}}^2,$$

• Federation gain (quantify the benefit of joining FL)

$$\mathsf{FG}_{j} \triangleq \frac{R_{j}^{\mathsf{Loc}}}{R_{j}^{\mathsf{Fed}}}$$

Federation gain versus model heterogeneity

- Linear regression $y_j = \mathbf{x}_j \theta_j^* + \xi_j$
- Diameter of model parameters $\Gamma = \max_{i,j \in [M]} \|\theta_i^* \theta_j^*\|_2$

Federation gain versus model heterogeneity

- Linear regression $y_j = \mathbf{x}_j \theta_j^* + \xi_j$
- Diameter of model parameters $\Gamma = \max_{i,j \in [M]} \|\theta_i^* \theta_j^*\|_2$
- Theoretical lower bound

$$\mathsf{FG}_{j} \gtrsim \frac{\min\{\sigma^{2}d/n_{j}, \|\theta_{j}^{*}\|^{2}\} + \max\{1 - n_{j}/d, 0\}\|\theta_{j}^{*}\|^{2}}{\sigma^{2}d/N + \Gamma^{2}}$$

Federation gain versus model heterogeneity

• Linear regression
$$y_j = \mathbf{x}_j \theta_j^* + \xi_j$$

- Diameter of model parameters $\Gamma = \max_{i,j \in [M]} \|\theta_i^* \theta_j^*\|_2$
- Theoretical lower bound

$$\mathsf{FG}_{j} \gtrsim \frac{\min\{\sigma^{2}d/n_{j}, \|\theta_{j}^{*}\|^{2}\} + \max\{1 - n_{j}/d, 0\}\|\theta_{j}^{*}\|^{2}}{\sigma^{2}d/N + \Gamma^{2}}$$

• d = 100, $n_i = 50$ (data scarce) or 500 (data rich)

Federation gain versus covariate heterogeneity

A data scarce client

A data rich client

40

20

s=1

s=5

r

s = 10

FedProx

60

80

100

• Lili Su, Jiaming Xu, Y., A Non-parametric View of FedAvg and FedProx: Beyond Stationary Points, Journal of Machine Learning Research 2023.