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Deep 
Learning

Increasingly
sophisticated

models

Increasingly
larger

datasets

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,

each with many HW accelerators (GPUs)
Compute requirements doubling every 3 months!
Training models is still very time-consuming: days or even weeks!
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Scaling 
Machine 
Learning

Make efficient use of combined 
resources at multiple worker nodes 
while tackling significant 
synchronization overheads

Can the network be 
the ML accelerator?
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Data-parallel distributed DNN training

Data 
samples

W1

W3

W2

W4

Gradient synchronization

All-to-all intensive 
communication 
pattern
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100s of MBs to GBs
gradient 

synchronization
in each iteration



A closer look at model synchronization

Switch

Distributed ML scales 
poorly due to 
communication costs

W1 W3W2 W4

If only I could 
help…
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SwitchML: Co-design ML and networking

6.5 Tbps
programmable 

data plane

Challenges
Limited computation

Limited storage

No floating points

Packet loss

Design
• Combined switch-host architecture

• Pool-based streaming aggregation

• Quantized integer operations

• Failure-recovery protocol

• In-switch RDMA implementation

[NSDI’21]

In collaboration with:

github.com/p4lang/p4app-switchML
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~100’s of MB

Streaming aggregation

Switch

U2U1

A2A1

3 4 5 61 2 3 4 5 61 2

Worker 1 Worker 2

3 4 5 61 25 621

1 21 2 3 45 6 3 45 6

43

Pool

~100’s of KB 7



Combined switch-host architecture

Switch

Worker 1 Worker 4Worker 2 Worker 3

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Quantization &
failure recovery

Fixed-point 
aggregation
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Combined switch-host architecture

Switch

Worker 1 Worker 4Worker 2 Worker 3

Quantization Quantization Quantization Quantization

Fixed-point 
aggregation

Block quantization

Scaling factors 
aggregation

Scaling factors 
aggregation

Scaling factors 
aggregation

Scaling factors 
aggregation

Fixed-point 
aggregation

Fixed-point 
aggregation

Fixed-point 
aggregation

Fixed-point 
aggregation

TimeRTT
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Combined switch-host architecture

Switch

Worker 1 Worker 4Worker 2 Worker 3

Quantization Quantization Quantization Quantization

Fixed-point 
aggregation

Quantization allows training to similar accuracy in a similar number 
of iterations as an unquantized network
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How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27× on 100Gbps networks
Speedup is higher with faster GPUs that reduce the computation/communication ratio
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How does SwitchML scale with # of workers? 

SwitchML performance does not depend on the number of workers
M

ill
io

ns
 o

f A
gg

re
ga

te
d 

Te
ns

or
 

El
em

en
ts

 p
er

 se
co

nd

12



FPISA [NSDI’22]

• How to perform floating point ops on programmable switches?
• Proposed mechanisms to enable native floating point support in

commodity PISA switches (w/ a few, small HW modifications)
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Sparse
Collective 

Communication Many gradients in huge models
are highly sparse

How to efficiently 
aggregate sparse 
gradients?

Model Task Model size Sparsity

DeepLight CTR prediction 2.3 GB 99%

LSTM Language modeling 1.5 GB 94%

BERT Qs answering 1.3 GB 9%

NCF Recommendation 680 MB 84%

VGG19 Image classification 548 MB 32%

ResNet152 Image classification 230 MB 21%
14



global next block: -∞
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Aggregator

OmniReduce: sparse streaming aggregation
W1 1 1 0 0 1 1 1 1

W2 1 1 0 0 0 0 1 1

1 1

next block: 2
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2 2

2 2 0 0
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1 1

1 1

next block: ∞

1 1

next block: ∞

2 2

2 2

1 1

next block: 3

1 1 • Split data into blocks
• Stream non-zero blocks 

to aggregator
• Keep global view of 

next block

High performance 
through fine-grained 
parallelization (pool of 
aggregation slots) and 
pipelining to saturate 
network bandwidth
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Does OmniReduce speed up training?

• SwitchML* is a software-based 
implementation of SwitchML

(fair comparison with software aggregator)
• AGsparse is allgather-based sparse 

allreduce method
(compression overheads are not considered) 

OmniReduce is up to 2.23× faster than SwitchML* on 100Gbps networks
Models with higher sparsity gain more from efficient sparse collective communication

OmniReduce is in
trial deployment at
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Compressing 
Gradients

Decrease communication overhead by reducing data volume via 
lossy compression

Raises interesting trade-offs:
accuracy vs training throughput

vs (de)compression efficiency

Quantization
Reduces the bitwidth of each element
(e.g., float32 à float16)

Sparsification
Samples only a few elements
(e.g., top-k values by magnitude)

à
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GRACE [ICDCS’21]

• Unified framework, survey and quantitative
evaluation of 16 compressors on 7 benchmarks
• No one-size-fits-all, compression has overheads

TopK
TopK-EF

Volume and quality 
not always correlate
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GRACE [ICDCS’21]

• Unified framework, survey and quantitative
evaluation of 16 compressors on 7 benchmarks
• No one-size-fits-all, compression has overheads

SIDCo [MLSys’21]
• Threshold sparsification: O(n) low overhead but estimation is hard
• Multi-stage estimation + sparsity-inducing distributions (gain 41×)

TopK
TopK-EF

Volume and quality 
not always correlate
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GRACE [ICDCS’21]

• Unified framework, survey and quantitative
evaluation of 16 compressors on 7 benchmarks
• No one-size-fits-all, compression has overheads

SIDCo [MLSys’21]
• Threshold sparsification: O(n) low overhead but estimation is hard
• Multi-stage estimation + sparsity-inducing distributions (gain 41×)

TopK
TopK-EF

Volume and quality 
not always correlate

DC2 [INFOCOM’21]

• Fixed compression ineffective in dynamic nets
• Delay-aware adaptive compression couples 

compression with avail. bandwidth (gain 5.3×)
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Gradient sparsification as total error minimization [NeurIPS’21]
• Prior work restricted to a fixed comm. budget

per iteration, not opt. comm. savings vs. accuracy
• W/ total error perspective (variable comm. budget)

we show hard threshold sparsifier is comm. opt.
in this model

Natural Compression [MSML’22]

• Quantization scheme: randomized rounding to nearest power of 2
• Thanks to IEEE float format,

allows to drop the mantissa and
send 9 out 32 bits
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Something still brewing
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NVSwitch

GPU GPU GPU GPU

GPU GPU GPU GPU

NIC NIC

NIC NIC

PCIe

PCIe

PCIe

PCIe

• Actual DC “unit”: Multi-GPU servers
• How to order compression relative to 

fast intra-node communication?
• compress first, then intra, then inter
• intra first, then compress, then inter

• Where to compress?
• GPU: overheads and contention
• NIC? emerging DPUs or FPGAs

• But then why send uncompressed data 
on slow PCI? Add NIC on interconnect?



Summary

Get in touch: marco@kaust.edu.sa

Distributed DL increasingly a communication-bound workload

Our work seeks to accelerate training with:
• Efficient in-network streaming aggregation
• Compressed communication at low overhead
• Managed adaptation to network dynamics

We achieve significant speed ups over existing solutions
Our systems are open source
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This is interesting? Join us!
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Our Aspiration 
Destination

KAUST aspires to be a destination for scientific and 
technological education and research. By inspiring 

discoveries to address global challenges, we strive to 
serve as a beacon of knowledge that bridges people 

and cultures for the betterment of humanity.

Post-doctoral and MS/PhD student positions

https://sands.kaust.edu.sa/
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