Accelerated Deep Learning via Efficient, Compressed and Managed Communication

Marco Canini

sands.kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Deep Learning

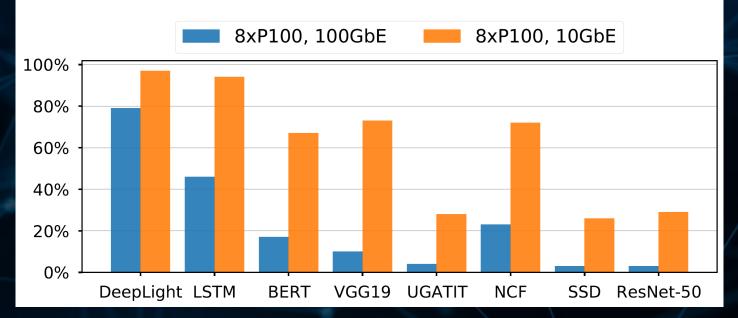
Increasingly sophisticated models

Increasingly larger datasets

Innovation fueled by leaps in (costly) infrastructure: **Clusters with hundreds of machines, each with many HW accelerators (GPUs)** Compute requirements **doubling every 3 months!** Training models is still **very time-consuming**: days or even weeks! Scaling Machine Learning

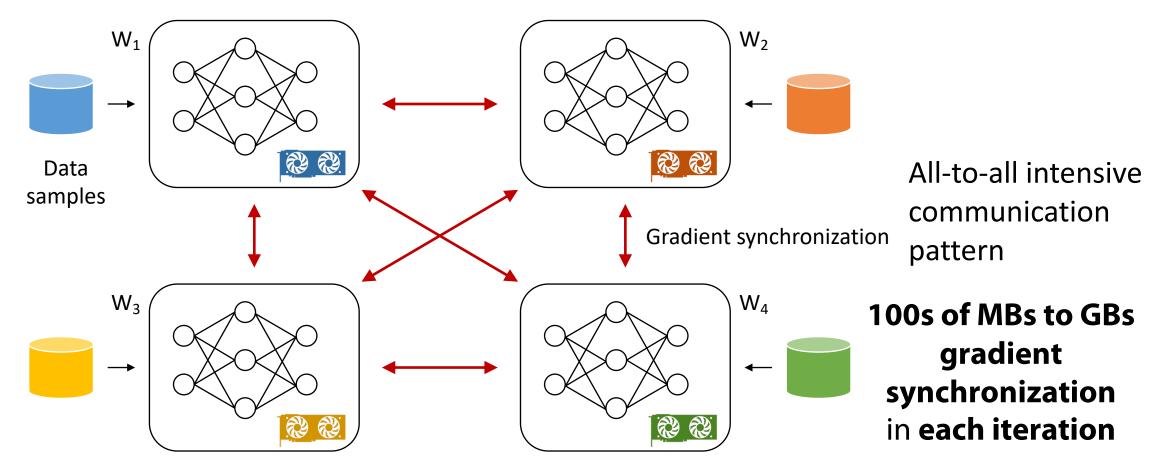
Make efficient use of combined resources at multiple worker nodes while tackling significant synchronization overheads

% of training time spent in communication

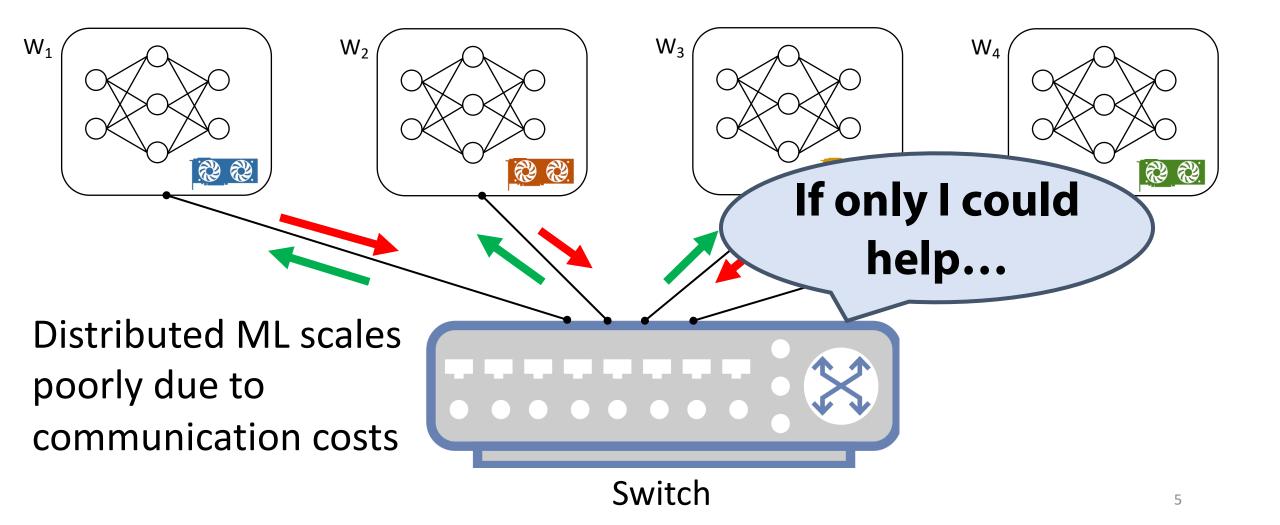


Can the network be the ML accelerator?

Data-parallel distributed DNN training



A closer look at model synchronization



SwitchML: Co-design ML and networking

[NSDI'21] <u>github.com/p4lang/p4app-switchML</u>

Challenges

- </>
 Limited computation
 Limited storage
 - No floating points

6.5 Tbps programmable data plane

In collaboration with:

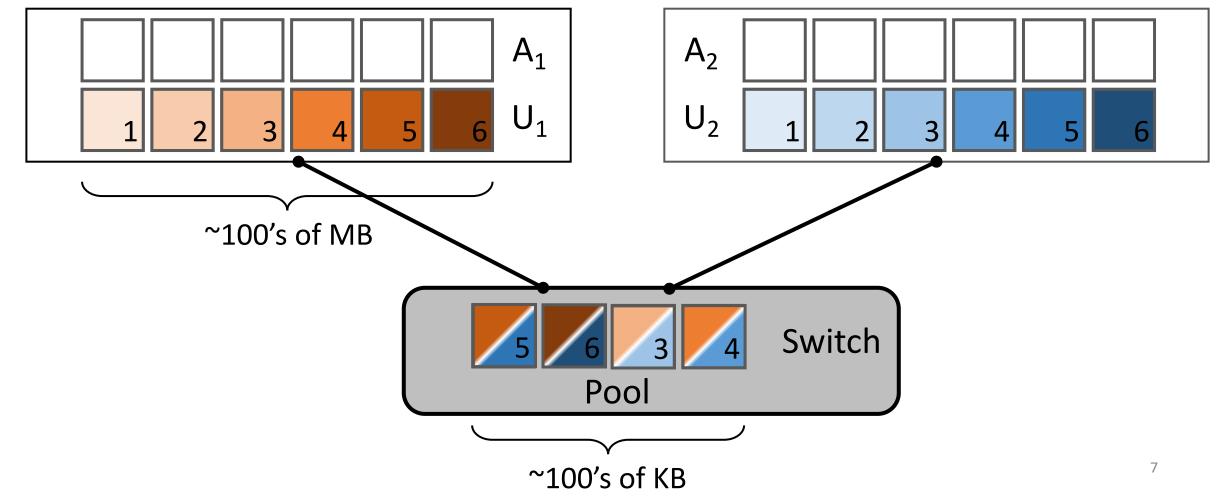
Microsoft

Design

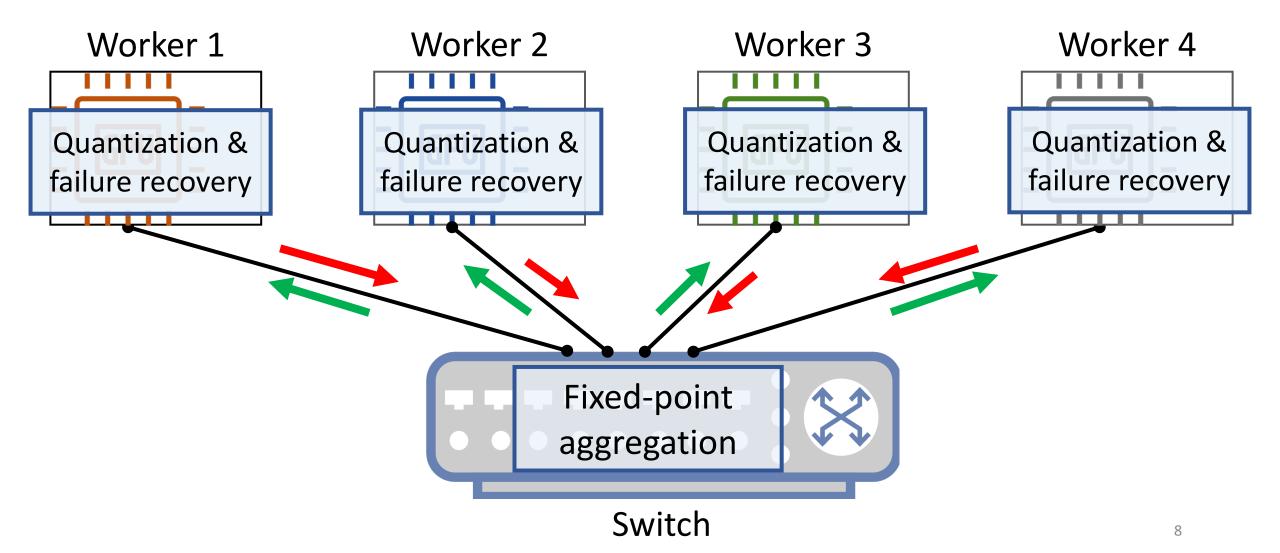
- Combined switch-host architecture
- Pool-based streaming aggregation
- Quantized integer operations
- Failure-recovery protocol
- In-switch RDMA implementation

Streaming aggregation

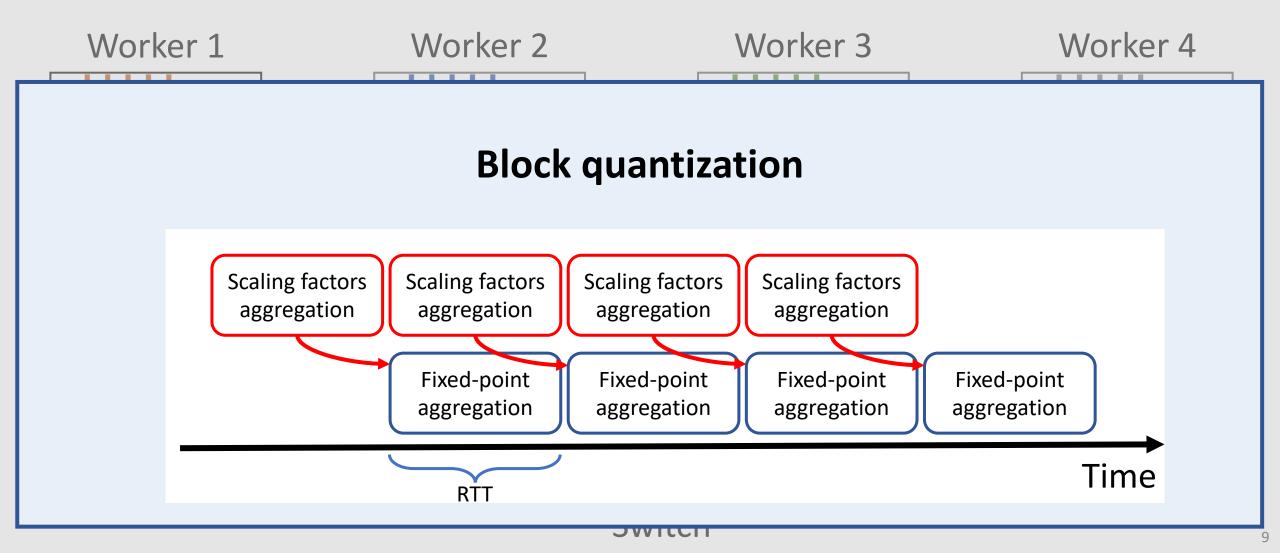
Worker 1



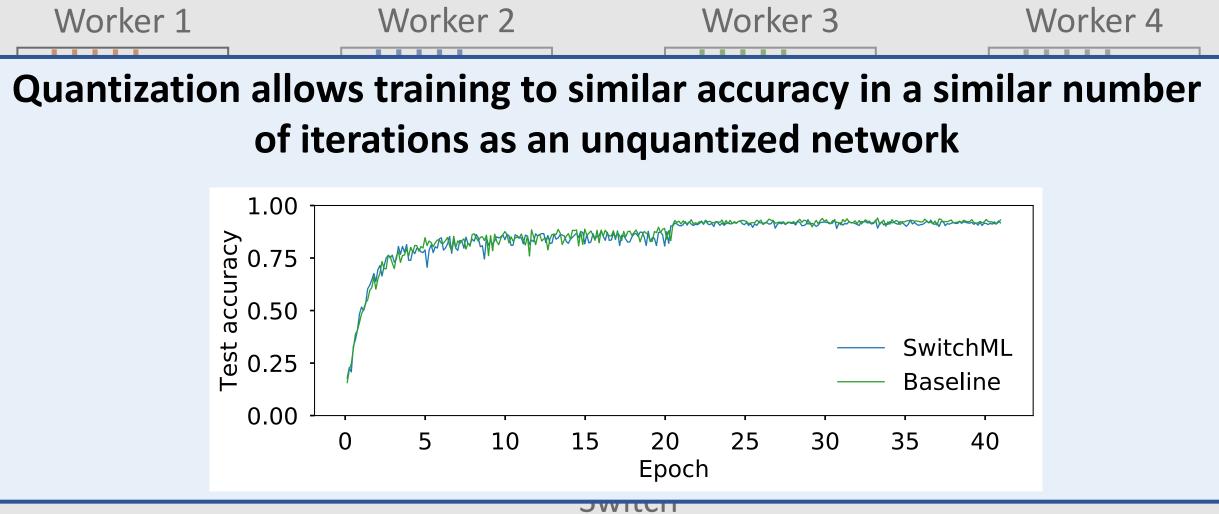
Combined switch-host architecture



Combined switch-host architecture

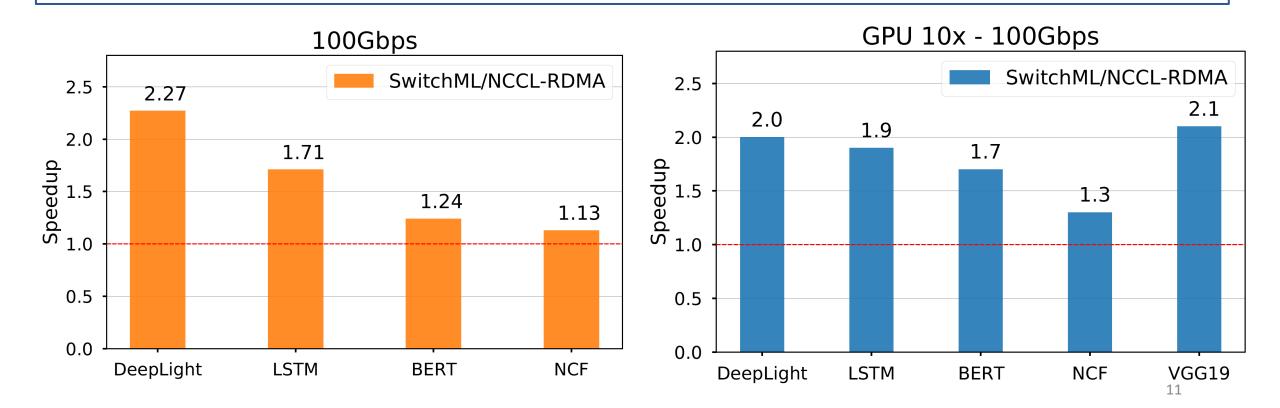


Combined switch-host architecture



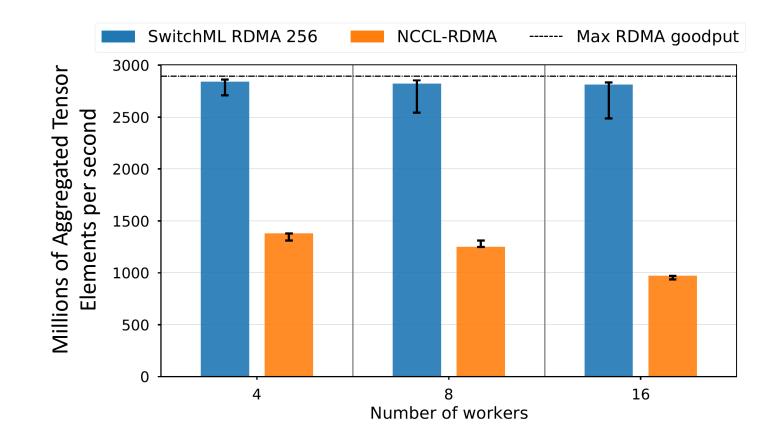
How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27× on 100Gbps networks Speedup is higher with faster GPUs that reduce the computation/communication ratio



How does SwitchML scale with # of workers?

SwitchML performance does not depend on the number of workers



FPISA [NSDI'22]

- How to perform floating point ops on programmable switches?
- Proposed mechanisms to enable native floating point support in commodity PISA switches (w/ a few, small HW modifications)

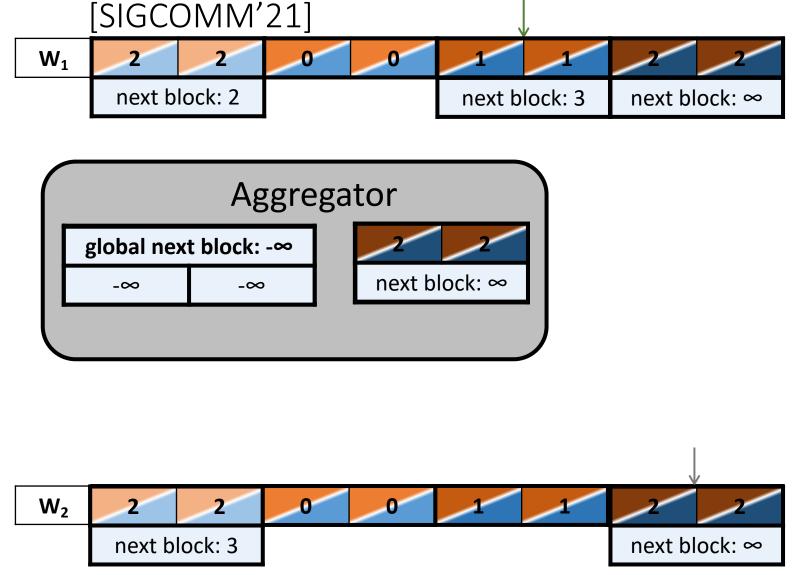
Sparse Collective Communication

Many gradients in huge models are highly sparse

Model	Task	Model size	Sparsity
DeepLight	CTR prediction	2.3 GB	99%
LSTM	Language modeling	1.5 GB	94%
BERT	Qs answering	1.3 GB	9%
NCF	Recommendation	680 MB	84%
VGG19	Image classification	548 MB	32%
ResNet152	Image classification	230 MB	21%

How to efficiently aggregate sparse gradients?

OmniReduce: sparse streaming aggregation

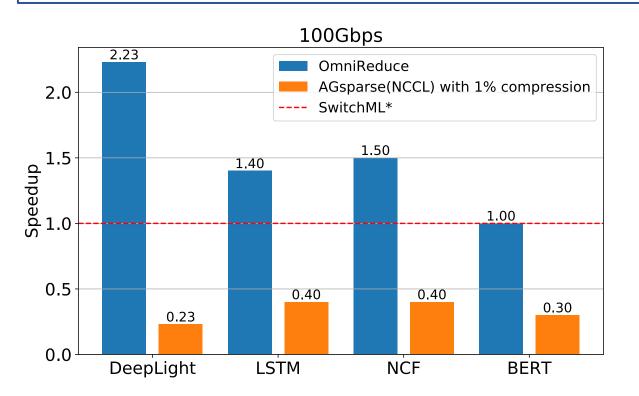


- Split data into blocks
- Stream non-zero blocks to aggregator
- Keep global view of next block

High performance through fine-grained parallelization (*pool of aggregation slots*) and pipelining to saturate network bandwidth

Does OmniReduce speed up training?

OmniReduce is up to 2.23× faster than SwitchML* on 100Gbps networks Models with higher sparsity gain more from efficient sparse collective communication



- SwitchML* is a software-based implementation of SwitchML (fair comparison with software aggregator)
- AGsparse is allgather-based sparse allreduce method

(compression overheads are not considered)

OmniReduce is in trial deployment at

Compressing Gradients

Quantization \rightarrow Reduces the bitwidth of each element (e.g., float32 \rightarrow float16)

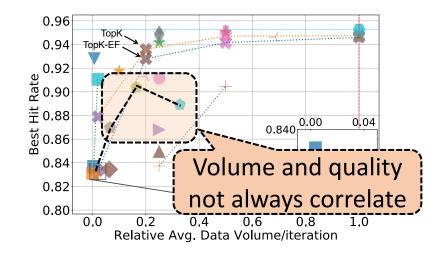
Sparsification Samples only a few elements (e.g., top-k values by magnitude)

Decrease communication overhead by reducing data volume via lossy compression

Raises interesting trade-offs: accuracy vs training throughput vs (de)compression efficiency

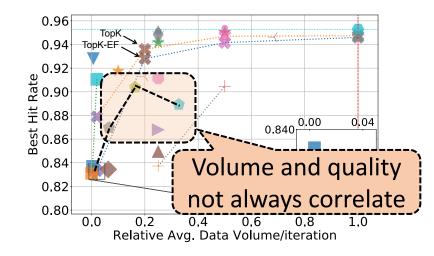
GRACE [ICDCS'21]

- Unified framework, survey and quantitative evaluation of 16 compressors on 7 benchmarks
 - No one-size-fits-all, compression has overheads



GRACE [ICDCS'21]

- Unified framework, survey and quantitative evaluation of 16 compressors on 7 benchmarks
 - No one-size-fits-all, compression has overheads

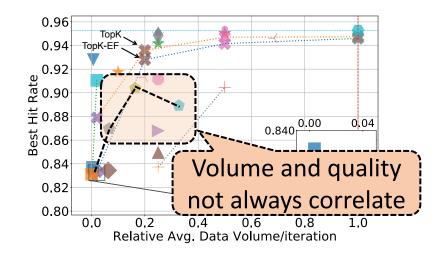


SIDCo [MLSys'21]

- Threshold sparsification: O(n) low overhead but estimation is hard
- Multi-stage estimation + sparsity-inducing distributions (gain 41×)

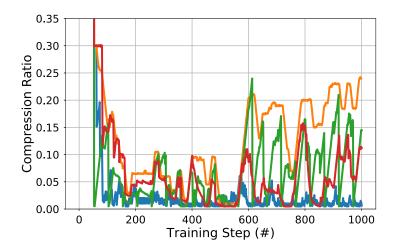
GRACE [ICDCS'21]

- Unified framework, survey and quantitative evaluation of 16 compressors on 7 benchmarks
 - No one-size-fits-all, compression has overheads



SIDCo [MLSys'21]

- Threshold sparsification: O(n) low overhead but estimation is hard
- Multi-stage estimation + sparsity-inducing distributions (gain 41×)



DC2 [INFOCOM'21]

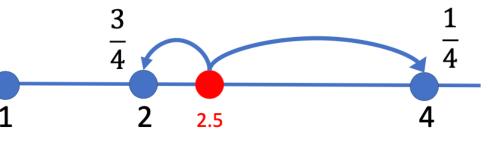
- Fixed compression ineffective in dynamic nets
- Delay-aware adaptive compression couples compression with avail. bandwidth (gain 5.3×)

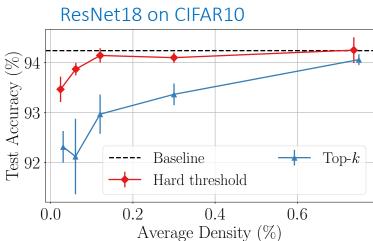
Gradient sparsification as total error minimization [NeurIPS'21]

- Prior work restricted to a fixed comm. budget per iteration, not opt. comm. savings vs. accuracy
- W/ total error perspective (variable comm. budget) we show hard threshold sparsifier is comm. opt. in this model

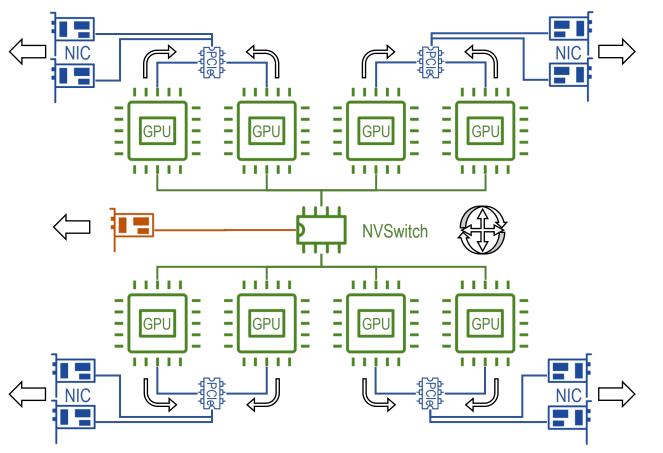
Natural Compression [MSML'22]

- Quantization scheme: randomized rounding to nearest power of 2
- Thanks to IEEE float format, allows to drop the mantissa and send 9 out 32 bits





Something still brewing



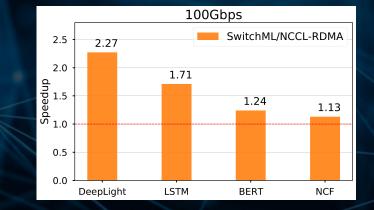
- Actual DC "unit": Multi-GPU servers
- How to order compression relative to fast intra-node communication?
 - compress first, then intra, then inter
 - intra first, then compress, then inter
- Where to compress?
 - GPU: overheads and contention
 - NIC? emerging DPUs or FPGAs
- But then why send uncompressed data on slow PCI? Add NIC on interconnect?

Summary

Distributed DL increasingly a **communication-bound** workload

Our work seeks to accelerate training with:

- **Efficient** in-network streaming aggregation
- **Compressed** communication at low overhead
- **Managed** adaptation to network dynamics



We achieve significant speed ups over existing solutions Our systems are open source Get in touch: marco@kaust.edu.sa sands.kaust.edu.sa

ACKs

KAUST Ahmed M. Abdelmoniem Omar Alama M.-Slim Alouini E. H. Bergou **Muhammad Bilal** Aritra Dutta Ahmed Elzanaty Suhaib Fahmy Jiawei Fei Chen-Yu Ho Panos Kalnis

Konstantinos Karatsenidis **Pantelis Papageorgiou** Peter Richtarik Atal N. Sahu Amedeo Sapio Hang Xu MSR Dan R. K. Ports Jacob Nelson UW **Arvind Krishnamurthy**

<mark>UIUC</mark> Nam Sung Kim Yifan Yuan

now here

Barefoot (Intel) Changhoon Kim Masoud Moshref

This is interesting? Join us!

Post-doctoral and MS/PhD student positions

Our Aspiration Destination

KAUST aspires to be a destination for scientific and technological education and research. By inspiring discoveries to address global challenges, we strive to serve as a beacon of knowledge that bridges people and cultures for the betterment of humanity.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

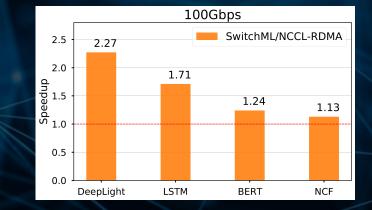
sands.kaust.edu.sa

Summary

Distributed DL increasingly a **communication-bound** workload

Our work seeks to accelerate training with:

- **Efficient** in-network streaming aggregation
- **Compressed** communication at low overhead
- **Managed** adaptation to network dynamics



We achieve significant speed ups over existing solutions Our systems are open source Get in touch: marco@kaust.edu.sa sands.kaust.edu.sa