Tissue vs. Silicon Musings on the Future of Deep Learning Hardware and Software Nir Shavit MIT R Neural Magic Inc.

* Disclaimer: all calculations in this talk are "back of the envelope" and should be taken with a grain of salt. Sources available upon request.

Moore's Law Dead => Long Live Domain Specific Hardware ?

The Story of ML Inferencing

Speed is an enabler, not just a cost saver

The Story of ML Inferencing

Speed is an enabler, not just a cost saver

PREDICTION

Neuromorphic ML Hardware

- "Throughput Computing" hardware for ML (> 100 Billion Market)
- Nvidia GPU / Google TPU / Intel Habana and over 70 Startups

Google: The Brain as a TPU POD

"100 Peta FLOPs of machine learning power"

Compute

- Human Cortex = ~16 billion neurons
- Cortical neurons spike ~0.16 times per second
- ~7000 synapses each = 700 or 70 connections per neuron?

Blue neuron connects to green at *multiple* synapses

Bobby Kasthuri

Compute

- Human Cortex = ~16 billion neurons
- Cortical neurons spike ~0.16 times per second
- ~7000 synapses each = 700 or 70 connections per neuron?

16 B x 0.16 x 700 = ~2 Trillion ops/sec

• iPhone = ~5 Trillion ops/sec

Cortex is 5-6 orders of magnitude less compute than TPU pod

Image Recognition

- A 224x224 = .05 million pixel image takes ~20-30 billion ops to compute on popular NNets
- Human Iris = ~100 million pixels (2,000x more pixels)

NNets would take at least 40 trillion ops/image

• We can recognize an image in 13ms so even if use whole cortex ...

~2 Trillion * .013 = ~20 billion ops/image

Brain 3-4 orders of magnitude more efficient

Memory Size

- Human Corex = ~300 trillion synapses
- Connectome Graph size? 300 x 4bytes = 1.2Pb
- GPU/TPU typical 16-32Gb HBM2 memory

GPU/TPU pod memory is ~4-5 orders of magnitude too small

Brain in Silicon

Why? Because we don't know the graph...

Future of Neural Hardware/Software

- Silicon need not imitate neural parallelism to reproduce function (flops are flops are flops)
- Neural Tissue is
 - Sparse
 - And has "locality of reference"
- Can we mimic this in hardware/software?
- Yes... and for now perhaps we can best do this is on a CPU

GPU vs. CPU Memory

GPU Architecture (increasing year 2017-2021)

Accelerators have a "Big Model" Problem

In 3 GPU generations, compute grew 15x. Memory grew only 1.5x!

HARDWARE ACCELERATORS

CPU ALONE

HARDWARE ACCELERATORS

Caches

CPU ALONE

Execute synchronously layer by layer

HARDWARE ACCELERATORS

Caches

CPU ALONE

Execute synchronously layer by layer

HARDWARE ACCELERATORS

Caches

Execute synchronously layer by layer

CPU ALONE

Works poorly!

HARDWARE ACCELERATORS

Caches

CPU ALONE

Execute synchronously layer by layer

HARDWARE ACCELERATORS

Caches

Execute synchronously layer by layer

CPU ALONE

Prune the network to reduce compute

HARDWARE ACCELERATORS

Caches

Execute synchronously layer by layer

CPU ALONE

Execute asycnhronously in cache

CPU with Sparsity & Caching Aware Runtime = GPU

BERT-base Inference Latency

* CPU running 95% sparse model on Neural Magic DeepSparse[™] Runtime Software

And also at Batch=1 throughput

BERT-base Multistream Throughput

Batch 1, Sequence Length 128 - AMD Milan-X 64 core, elastic mode with 2 streams per CCX

* CPU running 95% sparse model on Neural Magic DeepSparse[™] Runtime Software

The Future of Neural Hardware

Big question is, as models grow, and our ML algorithms better mimic brains, will we need special hardware, or will it suffice to just add specialized ML support operations into existing CPU hardware...

Thank You