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Overview of Part - I

SUB-PART 1. Some Reminders on Distributed Machine Learning

1.1 Reminders on supervised machine learning

1.2 Distributed/federated machine learning

1.3 Motivations for trustworthy machine learning

SUB-PART 2. Robustness to Byzantine Nodes (in Homogeneity)

2.1 Brittleness of vanilla methods

2.2 First step towards robustness: aggregation rules

2.3 More advanced tools: noise reduction
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Reminders on Distributed Learning



Supervised Learning (Example of Image Classification)

"cat"

"dog"

 set of images -

• Assumption: A ground-truth distribution D explains the link between X and Y
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Supervised Learning (Example of Image Classification)

"cat"

"dog"

 set of images -

• Assumption: A ground-truth distribution D explains the link between X and Y

• Goal: Use D to design a mapping h : X → R matching images X to labels Y

1) Define a loss function ℓ : R× Y → R+ and a hypothesis classH
2) Find h ∈ H to minimize the expected error E(x,y)∼D [ℓ (h(x), y)]
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Supervised Learning in Practice

• Given a set ofm training examples:

S := {(x1, y1), ..., (xm, ym)} ∼ Dm

• Parameterized classH := {hθ | θ ∈ Rd}

• Minimize the empirical risk:

L(θ) := 1

m

m∑
i=1

ℓ (hθ (xi) , yi)

Learning objective: Assuming L admits a minimum on Rd, we seek an
ε-approximate solution to the empirical risk minimization (ERM), i.e., θ̂ such that

L
(
θ̂
)
− L∗ ≤ ε, where L∗ = min

θ∈Rd
L (θ) .
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Stochastic Gradient Descent (SGD) in the Centralized Setting

• Simple and efficient method

• Well understood theoretically

• Massively used in practice
(especially for deep learning tasks)

• Start with an arbitrary parameter θ1

• At every step t = 1, · · · , T do:

• Sample a data point (x, y) ∼ Unif (S)

• Compute a stochastic gradient gt := ∇θt ℓ (y, hθt (x))

• Update the parameter θt+1 = θt − γgt
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Stochastic Gradient Descent (SGD) in the Centralized Setting

• Simple and efficient method

• Well understood theoretically

• Massively used in practice
(especially for deep learning tasks)

Notebook result Bottou et al. (2018): After T iterations of the SGD
algorithm, set θ̂ := θT+1. Then, under reasonable assumptions, θ̂ is an
ε-approximate solution to the ERM, with

ε ∈ O
(
ϕ(L,S)

T

)
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The More Data, The Better

Once we solve the ERM, we wonder how good is hθ̂ w.r.t the “real” risk ?

Intuitively, the more data the better:

1

m

m∑
i=1

ℓ (hθ̂ (xi) , yi) −→
m→∞

E(x,y)∼D [ℓ (hθ̂(x), y)]

Even more inmodern day ML with demanding tasks (e.g. vision or speech)
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Federated/Distributed Machine Learning

1. Datacenter distributed learning

→ Train a model on a single massive dataset
→ Distribution limits computations/storage

2. Cross-silo distributed/federated learning

→ Datacenters are geo-distributed by design
→ Keeping data locally is safer

3. Cross-device distributed/federated learning

→ Same reason for distribution / security requirement
→ Less computational power per device
→More diversity in the data (heterogeneity)
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Distributed Machine Learning: Problem Statement

• Server-based communications n computing
nodes and a (trusted) central server

• The nodes hold the data locally (Si)i∈[n]

Li(θ) :=
1

m

∑
(x,y)∈Si

ℓ (hθ(x), y)

• The server coordinates the learning

Learning objective: Finding an ε-approximate solution to the ERM for the loss
function defined as L(θ) := 1

n

∑n
i=1 Li(θ)
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Some Additional Information on the Problem Statement (1/2)

The problem is L-smooth and µ-strongly convex

• ∃L > 0 such that for all θ, θ′ ∈ Rd and any (x, y) ∼ D, the following holds:

∥∇ℓ(hθ(x), y)−∇ℓ(hθ′(x), y)∥ ≤ L
∥∥θ − θ′

∥∥.

• ∃µ > 0 such that for all θ ∈ Rd, we have

∥∇L(θ)∥2 ≥ 2µ (L(θ)− L∗) (Polyak’s inequality)

→ Numerical examples neural-network for image classification
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Some Additional Information on the Problem Statement (2/2)

• All local datasets have the same sizem (everything can be adapted)
→We make this assumption, just for simplicity

• Homogeneity of the datasets, i.e., Si = Sj , for all i, j ∈ [n]

→ This is just for my talk, Nirupam will remove this assumption

Bounded stochasticity: There exists σ ≥ 0 such that for all i ∈ [n] and θ ∈ Rd,

1

m

∑
(x,y)∈Si

∥∇ℓ (hθ(x), y)−∇Li(θ)∥2 ≤ σ2

→ Every time I sample a point at random in Si the gradient estimate has a bounded
expected ∥·∥2 to the real gradient
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Distributed Stochastic Gradient Descent (DSGD)

Initialize the model at θ1, then at every
step t = 1, . . . , T

• node i computes & sends

g
(i)
t = ∇θt ℓ (yi, hθt (xi)) ,

where (xi, yi) ∼ Si.

• Server updates & broadcast

θt+1 = θt − γ
1

n

n∑
i=1

g
(i)
t

Textbook result Bertsekas and Tsitsiklis (2015):

Set θ̂ := θT+1. Then θ̂ is an ε-approximate solution to the ERM, with

ε ∈ O
(
KLσ

2

nT

)
, and KL :=

L

µ
.
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Machine learning models are everywhere

• Machine learning models recently gave outstanding results (e.g. vision, NLP)

• Industries and governments are starting to use them in critical applications
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Personal Devices

1

1
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Machine learning models are everywhere

• Machine learning models recently gave outstanding results (e.g. vision, NLP)

• Industries and governments are starting to use them in critical applications

AI-driven Technologies Decision-making Tools Personal Devices

1

1
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With Great Power Comes Great Responsibility

But great power comes great responsibility ...

Trustworthy
Machine Learning

Accountability

Robustness

ReliabilityFairness 

Machine Bias 

Interpretability

Privacy

Data Protection

Data Storage

• Massive use of learning algorithms raises
societal and technical issues

• Since the 80’s: privacy preserving database
analysis is a primary concern

• Some more recent and specific to Federated
Learning (Byzantine failures)
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Robustness to Byzantine Nodes



Misbehaving Nodes Are Inevitable

In practice, nodes may misbehave at any point during the learning

• Software bugs can occur and add errors in the computations

• Hardware crashes also happen, provoking machine crashes and/or errors

• Some nodes may have poisoned or irrelevant data

• Some machines can get hacked by external adversary

Challenge: We do not know a priori which nodes may misbehave (nor how)
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The Byzantine Threat Model

• We consider the Byzantine threat model
inherited from Lamport et al. (1982)

• Up to f < n/2 nodes may be bad

• When i is Byzantine we have

g
(i)
t = ∗, ∀t ∈ [T ]

New objective: DenoteH the set of honest (non-Byzantine) nodes. We seek an
ε-approximate solution to the ERM for the loss function defined as

LH(θ) :=
1

n− f

∑
i∈H

Li(θ) (a.k.a. (f, ε)-Byzantine resilience)

→ Despite the f Byzantine players (and not knowingH a priori)
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Is DSGD Byzantine Robust?

Honest

Honest

Honest Average

Byzantine

Recall update rule at the server:

θt+1 = θt − γ
1

n

n∑
i=1

g
(i)
t

The average is arbitrarily manipulable by
a single Byzantine node.

A standard approach to confer Byzantine robustness:

Replace the simple averaging with a non-linear aggregation rule F : Rd×n → Rd:

θt+1 = θt − γ F
(
g
(1)
t , . . . , g

(n)
t

)

→ Choosing F is close to the robust mean estimation problem
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Why is Choosing F a Challenging Problem?

One of the main challenges is uncertainty:

Essentially: the bigger σ, the harder it is to defend against Byzantine nodes

If σ2 = 0 (i.e., gradient descent)
→ F = Majority voting.

When σ2 > 0 (i.e., SGD)
→ F = ?
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Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)
→ Compute the median on each coordinates.

= 3 1 3 6 8
6 2 4 3 1

3
3 ((((

Coordinate-wise trimmed mean (CW-TM)
→Remove f biggest and f smallest coordinates on each
dimension, and then average.

= 3 1 3 6 8
6 2 4 3 1

4
3 ((((

Both these solutions have been analyzed, e.g., in Yin et al. (2018).
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Coordinate-wise trimmed mean (CW-TM)
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Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)
→Output a vector that realizes the geometric median of
the send gradients, i.e.,

GM (v1, . . . , vn) ∈ argminv∈Rd

n∑
i=1

∥v − vi∥.

MDA Rousseeuw (1985)
→ Choose a set of indices S∗ with cardinality n−f and
with the smallest diameter. Then average over S∗, i.e.,

MDA (v1, . . . , vn) =
1

n− f

∑
i∈S∗

vi.

But alsoMeaMed Xie et al. (2018), Krum, Multi-Krum Blanchard et al. (2017) ...
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A First Step Towards Resilience

Common notion of (f, κ)-robust averaging:

For any set of n vectors v1, . . . , vn ∈ Rd and any subset S ⊆ [n] of size n− f ,

∥F (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

Rationale: Ensure that the distance between the result of the aggregation rule and the
average of honest workers’ inputs is bounded by their variance times a factor κ.

Quick sanity check: If σ2 = 0 the honest workers are identical (full gradients)∑
i∈S

∥vi − vS∥2 = 0

→ The aggregation rule should mimic the majority voting scheme.

Rafael Pinot & Nirupam Gupta - PODL 2023 Tutorial Part I: Introduction to Robust Distributed Learning 21



A First Step Towards Resilience

Common notion of (f, κ)-robust averaging:

For any set of n vectors v1, . . . , vn ∈ Rd and any subset S ⊆ [n] of size n− f ,

∥F (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

Rationale: Ensure that the distance between the result of the aggregation rule and the
average of honest workers’ inputs is bounded by their variance times a factor κ.

Quick sanity check: If σ2 = 0 the honest workers are identical (full gradients)∑
i∈S

∥vi − vS∥2 = 0

→ The aggregation rule should mimic the majority voting scheme.

Rafael Pinot & Nirupam Gupta - PODL 2023 Tutorial Part I: Introduction to Robust Distributed Learning 21



A First Step Towards Resilience

Common notion of (f, κ)-robust averaging:

For any set of n vectors v1, . . . , vn ∈ Rd and any subset S ⊆ [n] of size n− f ,

∥F (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

Rationale: Ensure that the distance between the result of the aggregation rule and the
average of honest workers’ inputs is bounded by their variance times a factor κ.

Quick sanity check: If σ2 = 0 the honest workers are identical (full gradients)∑
i∈S

∥vi − vS∥2 = 0

→ The aggregation rule should mimic the majority voting scheme.

Rafael Pinot & Nirupam Gupta - PODL 2023 Tutorial Part I: Introduction to Robust Distributed Learning 21



A First Step Towards Resilience

Common notion of (f, κ)-robust averaging:

For any set of n vectors v1, . . . , vn ∈ Rd and any subset S ⊆ [n] of size n− f ,

∥F (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

→ This definition is satisfied by many existing aggregation rules.

Agg. CW-TM GM CW-Med L.B.

κ O
(

f
n−2f

)
O

(
1 + f

n−2f

)
O

(
1 + f

n−2f

)
Ω
(

f
n−2f

)
Applies to Krum,Multi-Krum Blanchard et al. (2017) andMeaMed Xie et al. (2018).
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A First Step Towards Resilience

Common notion of (f, κ)-robust averaging:

For any set of n vectors v1, . . . , vn ∈ Rd and any subset S ⊆ [n] of size n− f ,

∥F (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

Convergence result in the homogeneous case:

If F is an (f, κ)-robust averaging, setting θ̂ := θT+1, the algorithm satisfies
(f, ε)-Byzantine resilience with

ε ∈ O
(

KLHσ2

(n− f)T
+ κσ2

)
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Some Numerical Observations: Model Setting

Learning task: MNIST hand-written digit image classification task with n = 15

nodes out of which f = 5 might be Byzantine.

Adversarial behaviors: The Byzantine nodes apply either of the following:

• Label-flipping: shift the label of each image 0123456789 → 1234567890

• Sign-flipping: send the inverse of the local gradient g(i)
t → −g

(i)
t
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Some Numerical Observations: The Results

Training accuracy of a CNN along the learning procedure on MNIST. On the left
label-flipping attack and on the right sign-flipping attack.
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Why is There Still a Gap?

Recall the challenge of uncertainty:

Main idea: Let us get the uncertainty smaller to obtain better convergence!
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Option 1: Mini-batch SGD & Dynamic Sampling

→ Each honest worker i

• Samples a batch of bt points

B
(i)
t = {(x1, y1), . . . , (xbt , ybt)}

• Computes and send

g
(i)
t =

1

bt

∑
(x,y)∈B

(i)
t

∇ℓ(hθt(x), y)

→ Server updates & broadcasts

θt+1 = θt − γF
(
g
(1)
t , . . . , g

(n)
t

)

Pros and cons of the method:

• Reduces the noise at every step σ2 → σ2

bt

• Need large bt to work which inflates the computationnal cost of the method
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Controlling Uncertainty Drift with Momentum

• Honest node i computes

m
(i)
t = βm

(i)
t−1 + (1− β)g

(i)
t ,

wherem(i)
0 = 0 and β ∈ [0, 1).

• Server updates & broadcast

θt+1 = θt − γF
(
m

(1)
t , . . . , m

(n)
t

)

Pros and cons of the method:

• Initially introduced to accelerate the learning when σ2 = 0, see Polyak (1964)

• Can also be used to control uncertainty when σ2 > 0

• Way harder to analyze (momentum drift vs noise reduction)

Rafael Pinot & Nirupam Gupta - PODL 2023 Tutorial Part I: Introduction to Robust Distributed Learning 28



Controlling Uncertainty Drift with Momentum

• Honest node i computes

m
(i)
t = βm

(i)
t−1 + (1− β)g

(i)
t ,

wherem(i)
0 = 0 and β ∈ [0, 1).

• Server updates & broadcast

θt+1 = θt − γF
(
m

(1)
t , . . . , m

(n)
t

)

Pros and cons of the method:

• Initially introduced to accelerate the learning when σ2 = 0, see Polyak (1964)

• Can also be used to control uncertainty when σ2 > 0

• Way harder to analyze (momentum drift vs noise reduction)

Rafael Pinot & Nirupam Gupta - PODL 2023 Tutorial Part I: Introduction to Robust Distributed Learning 28



Option 2: Controlling Uncertainty with Momentum

Key ingredient of the analysis: In short, we have that

E
[∥∥∥m(i)

t −mt

∥∥∥2
]
∈ O

(
σ2 (1− β)

)
, wheremt :=

1

(n− f)

∑
i∈H

m
(i)
t .

Then choosing the right momentum coefficient β (essentially) yields the result

→ Eluding quite some technicalities (especially on the momentum drift)

Convergence result in the homogeneous case Farhadkhani et al. (2022, 2023):

Assumes F is an (f, κ)-robust averaging and β is chosen “well-enough”. Then
setting θ̂ := θT+1, the algorithm satisfies (f, ε)-Byzantine resilience with

ε ∈ O
((

κ+
1

(n− f)

)
KLHσ2

T

)
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Impact of the Momentum on Byzantine Resilience

0 200 400 600 800
Step number

0.00

0.25

0.50

0.75

1.00

No attack
MDA
CWMED
CWTM
GM

0 200 400 600 800
Step number

0.00

0.25

0.50

0.75

1.00

No attack
MDA
CWMED
CWTM
GM

Same setting as before. Up without momentum (β = 0)

and down with momentum (β = 0.99)
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Take-home messages



Concluding Remarks

General take-home messages:

• Distributed Learning unlocks the use of machine learning in high-stack
applications and is driving research forward...

• ... but standard distributed learning solutions are not robust to misbehaving
nodes (a.k.a. Byzantine)

Technical solutions:

• First of all, use robust aggregation rules (median, trimmed mean, etc.).

• Second, reduce the noise of the stochastic gradients (e.g., using momentum).

Future directions:

• Understand the impact of data heterogeneity in (robust) federated learning

• How to combine robustness with other concerns (privacy, fairness, bias, etc.)
→ Nirupam’s talk
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Thanks for listening!
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