Tutorial Part – I

Introduction to Robust Machine-Learning

Principles of Distributed Learning

Rafael Pinot & Nirupam Gupta – Oct. 13 2023

EPFL – Distributed Computing Lab

{firstname}.{lastname}@epfl.ch

Based on a joint works with

Youssef Allouah Sadegh Farhadkhani Rachid Guerraoui

Nirupam Gupta

John Stephan

SUB-PART 1. Some Reminders on Distributed Machine Learning

- 1.1 Reminders on supervised machine learning
- 1.2 Distributed/federated machine learning
- 1.3 Motivations for trustworthy machine learning

SUB-PART 2. Robustness to Byzantine Nodes (in Homogeneity)

- 2.1 Brittleness of vanilla methods
- 2.2 First step towards robustness: aggregation rules
- 2.3 More advanced tools: noise reduction

Reminders on Distributed Learning

Supervised Learning (Example of Image Classification)

• Assumption: A ground-truth distribution \mathcal{D} explains the link between \mathcal{X} and \mathcal{Y}

Supervised Learning (Example of Image Classification)

- Assumption: A ground-truth distribution $\mathcal D$ explains the link between $\mathcal X$ and $\mathcal Y$
- **Goal:** Use \mathcal{D} to design a mapping $h : \mathcal{X} \to \mathbb{R}$ matching images \mathcal{X} to labels \mathcal{Y}

Supervised Learning (Example of Image Classification)

- Assumption: A ground-truth distribution \mathcal{D} explains the link between \mathcal{X} and \mathcal{Y}
- Goal: Use D to design a mapping h : X → R matching images X to labels Y
 1) Define a loss function l : R × Y → R⁺ and a hypothesis class H
 2) Find h ∈ H to minimize the expected error E_(x,y)~p [l(h(x), y)]

Supervised Learning in Practice

• Given a set of *m* **training examples**:

$$\mathcal{S} := \{(x_1, y_1), \dots, (x_m, y_m)\} \sim \mathcal{D}^m$$

- Parameterized class $\mathcal{H} := \{h_{\theta} \mid \theta \in \mathbb{R}^d\}$
- Minimize the **empirical risk**:

$$\mathcal{L}(\theta) := \frac{1}{m} \sum_{i=1}^{m} \ell\left(h_{\theta}\left(x_{i}\right), y_{i}\right)$$

Supervised Learning in Practice

• Given a set of m training examples:

$$\mathcal{S} := \{(x_1, y_1), \dots, (x_m, y_m)\} \sim \mathcal{D}^m$$

- Parameterized class $\mathcal{H} := \{h_{\theta} \mid \theta \in \mathbb{R}^d\}$
- Minimize the empirical risk:

$$\mathcal{L}(\theta) := \frac{1}{m} \sum_{i=1}^{m} \ell\left(h_{\theta}\left(x_{i}\right), y_{i}\right)$$

Learning objective: Assuming \mathcal{L} admits a minimum on \mathbb{R}^d , we seek an $\overline{\varepsilon}$ -approximate solution to the empirical risk minimization (ERM), i.e., $\hat{\theta}$ such that

$$\mathcal{L}\left(\hat{\theta}\right) - \mathcal{L}^{*} \leq \varepsilon, \text{ where } \mathcal{L}^{*} = \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right).$$

- Simple and efficient method
- Well understood theoretically
- Massively used in practice (especially for deep learning tasks)

- Simple and efficient method
- Well understood theoretically
- Massively used in practice (especially for deep learning tasks)
- Start with an arbitrary parameter θ_1
- At every step $t = 1, \cdots, T$ do:
 - Sample a data point $(x, y) \sim \text{Unif}(S)$
 - Compute a stochastic gradient $g_t := \nabla_{\theta_t} \ell(y, h_{\theta_t}(x))$
 - Update the parameter $\theta_{t+1} = \theta_t \gamma g_t$

- Simple and efficient method
- Well understood theoretically
- Massively used in practice (especially for deep learning tasks)

Notebook result Bottou et al. (2018): After *T* iterations of the SGD algorithm, set $\hat{\theta} := \theta_{T+1}$. Then, under reasonable assumptions, $\hat{\theta}$ is an ε -approximate solution to the ERM, with

$$\varepsilon \in \mathcal{O}\left(\frac{\phi(\mathcal{L},\mathcal{S})}{T}\right)$$

Once we solve the ERM, we wonder how good is $h_{\hat{\theta}}$ w.r.t the "real" risk ?

Once we solve the ERM, we wonder how good is $h_{\hat{\theta}}$ w.r.t the "real" risk ?

Intuitively, the more data the better:

$$\frac{1}{m} \sum_{i=1}^{m} \ell\left(h_{\hat{\theta}}\left(x_{i}\right), y_{i}\right) \xrightarrow[m \to \infty]{} \mathbb{E}_{(x,y) \sim \mathcal{D}}\left[\ell\left(h_{\hat{\theta}}(x), y\right)\right]$$

Once we solve the ERM, we wonder how good is $h_{\hat{\theta}}$ w.r.t the "real" risk ?

Intuitively, the more data the better:

$$\frac{1}{m} \sum_{i=1}^{m} \ell\left(h_{\hat{\theta}}\left(x_{i}\right), y_{i}\right) \xrightarrow[m \to \infty]{} \mathbb{E}_{(x,y) \sim \mathcal{D}}\left[\ell\left(h_{\hat{\theta}}(x), y\right)\right]$$

Even more in modern day ML with demanding tasks (e.g. vision or speech)

- 1. Datacenter distributed learning
 - \rightarrow Train a model on a single massive dataset
 - \rightarrow Distribution limits computations/storage

Federated/Distributed Machine Learning

- 1. Datacenter distributed learning
 - \rightarrow Train a model on a single massive dataset
 - \rightarrow Distribution limits computations/storage

- 2. Cross-silo distributed/federated learning
 - \rightarrow Datacenters are **geo-distributed** by design
 - \rightarrow Keeping data locally is safer

Federated/Distributed Machine Learning

- 1. Datacenter distributed learning
 - \rightarrow Train a model on a single massive dataset
 - \rightarrow Distribution limits computations/storage

- 2. Cross-silo distributed/federated learning
 - \rightarrow Datacenters are **geo-distributed** by design
 - \rightarrow Keeping data locally is safer

- 3. Cross-device distributed/federated learning
 - \rightarrow Same reason for distribution / security requirement
 - \rightarrow Less computational power per device
 - \rightarrow More diversity in the data (**heterogeneity**)

Distributed Machine Learning: Problem Statement

- Server-based communications *n* computing nodes and a (trusted) central server
- The **nodes** hold the data locally $(S_i)_{i \in [n]}$

$$\mathcal{L}_{i}(\theta) := \frac{1}{m} \sum_{(x,y) \in S_{i}} \ell\left(h_{\theta}(x), y\right)$$

• The server coordinates the learning

- Server-based communications *n* computing nodes and a (trusted) central server
- The **nodes** hold the data locally $(S_i)_{i \in [n]}$

$$\mathcal{L}_{i}(\theta) := \frac{1}{m} \sum_{(x,y) \in S_{i}} \ell\left(h_{\theta}(x), y\right)$$

• The server coordinates the learning

• $\exists L > 0$ such that for all $\theta, \ \theta' \in \mathbb{R}^d$ and any $(x, y) \sim \mathcal{D}$, the following holds:

 $\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$

• $\exists L > 0$ such that for all $\theta, \ \theta' \in \mathbb{R}^d$ and any $(x, y) \sim \mathcal{D}$, the following holds:

 $\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$

• $\exists L > 0$ such that for all θ , $\theta' \in \mathbb{R}^d$ and any $(x, y) \sim \mathcal{D}$, the following holds:

 $\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$

• $\exists \mu > 0$ such that for all $\theta \in \mathbb{R}^d$, we have

 $\left\| \nabla \mathcal{L}(\theta) \right\|^2 \geq 2 \mu \left(\mathcal{L}(\theta) - \mathcal{L}^* \right)$ (Polyak's inequality)

• $\exists L > 0$ such that for all θ , $\theta' \in \mathbb{R}^d$ and any $(x, y) \sim \mathcal{D}$, the following holds:

 $\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$

• $\exists \mu > 0$ such that for all $\theta \in \mathbb{R}^d$, we have

 $\left\|\nabla \mathcal{L}(\theta)\right\|^{2} \geq 2\mu \left(\mathcal{L}(\theta) - \mathcal{L}^{*}\right)$ (Polyak's inequality)

\rightarrow Numerical examples neural-network for image classification

Some Additional Information on the Problem Statement (2/2)

- All local datasets have the same size *m* (everything can be adapted)
 → We make this assumption, just for simplicity
- **Homogeneity** of the datasets, i.e., $S_i = S_j$, for all $i, j \in [n]$
 - ightarrow This is just for my talk, Nirupam will remove this assumption

Some Additional Information on the Problem Statement (2/2)

- All local datasets have the same size *m* (everything can be adapted)
 → We make this assumption, just for simplicity
- Homogeneity of the datasets, i.e., $S_i = S_j$, for all $i, j \in [n]$
 - ightarrow This is just for my talk, Nirupam will remove this assumption

Bounded stochasticity: There exists $\sigma \ge 0$ such that for all $i \in [n]$ and $\theta \in \mathbb{R}^d$,

$$\frac{1}{m} \sum_{(x,y)\in\mathcal{S}_i} \left\|\nabla \ell\left(h_{\theta}(x), y\right) - \nabla \mathcal{L}_i(\theta)\right\|^2 \le \sigma^2$$

- All local datasets have the same size *m* (everything can be adapted)
 → We make this assumption, just for simplicity
- **Homogeneity** of the datasets, i.e., $S_i = S_j$, for all $i, j \in [n]$
 - ightarrow This is just for my talk, Nirupam will remove this assumption

Bounded stochasticity: There exists $\sigma \ge 0$ such that for all $i \in [n]$ and $\theta \in \mathbb{R}^d$,

$$\frac{1}{m} \sum_{(x,y)\in\mathcal{S}_i} \left\|\nabla \ell\left(h_{\theta}(x), y\right) - \nabla \mathcal{L}_i(\theta)\right\|^2 \le \sigma^2$$

 \rightarrow Every time I sample a point at random in S_i the gradient estimate has a bounded expected $\|\cdot\|^2$ to the real gradient

Distributed Stochastic Gradient Descent (DSGD)

Initialize the model at θ_1 , then at every step $t = 1, \dots, T$

• node *i* computes & sends $g_t^{(i)} = \nabla_{\theta_t} \ell(y_i, h_{\theta_t}(x_i)),$

where $(x_i, y_i) \sim S_i$.

• Server updates & broadcast

$$\theta_{t+1} = \theta_t - \gamma \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

Distributed Stochastic Gradient Descent (DSGD)

Initialize the model at θ_1 , then at every step $t = 1, \dots, T$

• node *i* computes & sends $g_t^{(i)} = \nabla_{\theta_t} \ell(y_i, h_{\theta_t}(x_i)),$

where $(x_i, y_i) \sim S_i$.

• Server updates & broadcast

$$\theta_{t+1} = \theta_t - \gamma \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

Textbook result Bertsekas and Tsitsiklis (2015):

Set $\hat{\theta} := \theta_{T+1}$. Then $\hat{\theta}$ is an ε -approximate solution to the ERM, with

$$\varepsilon \in \mathcal{O}\left(\frac{\mathcal{K}_{\mathcal{L}}\sigma^2}{nT}\right), \text{ and } \mathcal{K}_{\mathcal{L}} := \frac{L}{\mu}.$$

- Machine learning models recently gave outstanding results (e.g. vision, NLP)
- Industries and governments are starting to use them in **critical applications**

- Machine learning models recently gave outstanding results (e.g. vision, NLP)
- Industries and governments are starting to use them in critical applications

- Machine learning models recently gave outstanding results (e.g. vision, NLP)
- Industries and governments are starting to use them in critical applications

Machine learning models are everywhere

- Machine learning models recently gave outstanding results (e.g. vision, NLP)
- Industries and governments are starting to use them in critical applications

But great power comes great responsibility ...

But great power comes great responsibility ...

- Massive use of learning algorithms raises **societal** and technical issues
- Since the 80's: privacy preserving database analysis is a primary concern
- Some more recent and specific to Federated Learning (**Byzantine failures**)
Robustness to Byzantine Nodes

• Software bugs can occur and add errors in the computations

- Software bugs can occur and add errors in the computations
- Hardware crashes also happen, provoking machine crashes and/or errors

- Software bugs can occur and add errors in the computations
- Hardware crashes also happen, provoking machine crashes and/or errors
- Some nodes may have **poisoned or irrelevant** data

- Software bugs can occur and add errors in the computations
- Hardware crashes also happen, provoking machine crashes and/or errors
- Some nodes may have **poisoned or irrelevant** data
- Some machines can get hacked by external adversary

- Software bugs can occur and add errors in the computations
- Hardware crashes also happen, provoking machine crashes and/or errors
- Some nodes may have **poisoned or irrelevant** data
- Some machines can get **hacked** by external adversary

Challenge: We do not know a priori which nodes may misbehave (nor how)

The Byzantine Threat Model

- We consider the **Byzantine threat model** inherited from Lamport et al. (1982)
- Up to f < n/2 nodes may be bad
- When *i* is Byzantine we have

$$g_t^{(i)} = *, \ \forall t \in [T]$$

The Byzantine Threat Model

- We consider the **Byzantine threat model** inherited from Lamport et al. (1982)
- Up to f < n/2 nodes may be bad
- When *i* is Byzantine we have

 $g_t^{(i)} = *, \,\forall t \in [T]$

New objective: Denote *H* the set of honest (non-Byzantine) nodes. We seek an ε -approximate solution to the ERM for the loss function defined as

$$\mathcal{L}_H(\theta) := rac{1}{n-f} \sum_{i \in H} \mathcal{L}_i(\theta)$$
 (a.k.a. (f, ε) -Byzantine resilience)

The Byzantine Threat Model

- We consider the **Byzantine threat model** inherited from Lamport et al. (1982)
- Up to f < n/2 nodes may be bad
- When *i* is Byzantine we have

 $g_t^{(i)} = *, \,\forall t \in [T]$

New objective: Denote *H* the set of honest (non-Byzantine) nodes. We seek an ε -approximate solution to the ERM for the loss function defined as

$$\mathcal{L}_H(\theta) := rac{1}{n-f} \sum_{i \in H} \mathcal{L}_i(\theta)$$
 (a.k.a. (f, ε) -Byzantine resilience)

 \rightarrow Despite the *f* Byzantine players (and not knowing *H* a priori)

Recall update rule at the server:

$$\theta_{t+1} = \theta_t - \gamma \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

The average is arbitrarily manipulable by a **single** Byzantine node.

A standard approach to confer Byzantine robustness:

Replace the simple averaging with a **non-linear** aggregation rule $F : \mathbb{R}^{d \times n} \to \mathbb{R}^d$:

$$heta_{t+1} = heta_t - \gamma F\left(g_t^{(1)}, \dots, g_t^{(n)}
ight)$$

 \rightarrow Choosing *F* is close to the **robust mean estimation** problem

One of the main challenges is uncertainty:

1

One of the main challenges is uncertainty:

Essentially: the bigger σ , the harder it is to defend against Byzantine nodes

If $\sigma^2 = 0$ (i.e., gradient descent)When $\sigma^2 > 0$ (i.e., SGD) \rightarrow F = Majority voting. \rightarrow F = ?

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med) \rightarrow Compute the median on each coordinates. CW-Med $\begin{pmatrix} 3 & 1 & 3 & 6 & 8 \\ 6 & 2 & 4 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med) \rightarrow Compute the median on each coordinates. CW-Med $\begin{pmatrix} 3 & 1 & 3 & 6 & 8 \\ 6 & 2 & 4 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

Coordinate-wise trimmed mean (CW-TM) \rightarrow Remove *f* biggest and *f* smallest coordinates on each

dimension, and then average.

$$\mathsf{CW-TM}\begin{pmatrix} 3 & 3 & 6 & 8 \\ & 2 & 4 & 3 \\ & & 2 & 4 & 3 \\ & & & & \\ & & & \\ & & & & \\ &$$

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med) → Compute the median on each coordinates. CW-Med $\begin{pmatrix} 3 & 1 & 3 & 6 & 8 \\ 6 & 2 & 4 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

Coordinate-wise trimmed mean (CW-TM) \rightarrow Remove *f* biggest and *f* smallest coordinates on each dimension, and then average.

$$\mathsf{CW-TM}\begin{pmatrix} 3 \mathbf{\lambda} & 3 & 6 \mathbf{\lambda} \\ \mathbf{\lambda} & 2 & 4 & 3 \mathbf{\lambda} \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Both these solutions have been analyzed, e.g., in Yin et al. (2018).

More sophisticated aggregations:

Geometric median Chen et al. (2017) \rightarrow Output a vector that realizes the geometric median of the send gradients, i.e., $GM(v_1, \dots, v_n) \in \operatorname{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n ||v - v_i||.$ More sophisticated aggregations:

Geometric median Chen et al. (2017) \rightarrow Output a vector that realizes the geometric median of the send gradients, i.e., $GM(v_1, \dots, v_n) \in \operatorname{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n ||v - v_i||.$

> **MDA** Rousseeuw (1985) \rightarrow Choose a set of indices S^* with cardinality n - f and with the smallest *diameter*. Then average over S^* , i.e., MDA $(v_1, \ldots, v_n) = \frac{1}{n - f} \sum_{i \in S^*} v_i$.

More sophisticated aggregations:

Geometric median Chen et al. (2017) \rightarrow Output a vector that realizes the geometric median of the send gradients, i.e., $GM(v_1, \dots, v_n) \in \operatorname{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n ||v - v_i||.$

> **MDA** Rousseeuw (1985) \rightarrow Choose a set of indices S^* with cardinality n - f and with the smallest *diameter*. Then average over S^* , i.e., MDA $(v_1, \ldots, v_n) = \frac{1}{n - f} \sum_{i \in S^*} v_i$.

But also MeaMed Xie et al. (2018), Krum, Multi-Krum Blanchard et al. (2017) ...

Rationale: Ensure that the distance between the result of the aggregation rule and the average of honest workers' inputs is bounded by their *variance* times a factor κ .

Rationale: Ensure that the distance between the result of the aggregation rule and the average of honest workers' inputs is bounded by their *variance* times a factor κ .

Quick sanity check: If $\sigma^2 = 0$ the honest workers are identical (full gradients)

$$\sum_{i\in S} \|v_i - \overline{v}_S\|^2 = 0$$

 \rightarrow The aggregation rule should mimic the majority voting scheme.

 \rightarrow This definition is satisfied by many existing aggregation rules.

ightarrow This definition is satisfied by many existing aggregation rules.

Agg.CW-TMGMCW-MedL.B.
$$\kappa$$
 $\mathcal{O}\left(\frac{f}{n-2f}\right)$ $\mathcal{O}\left(1+\frac{f}{n-2f}\right)$ $\mathcal{O}\left(1+\frac{f}{n-2f}\right)$ $\Omega\left(\frac{f}{n-2f}\right)$

Applies to Krum, Multi-Krum Blanchard et al. (2017) and MeaMed Xie et al. (2018).

Convergence result in the homogeneous case:

Convergence result in the homogeneous case:

If *F* is an (f, κ) -robust averaging, setting $\hat{\theta} := \theta_{T+1}$, the algorithm satisfies (f, ε) -Byzantine resilience with

$$\varepsilon \in \mathcal{O}\left(rac{\mathcal{K}_{\mathcal{L}_H}\sigma^2}{(n-f)T} + \kappa\sigma^2
ight)$$

Learning task: MNIST hand-written digit image classification task with n = 15 nodes out of which f = 5 might be Byzantine.

Learning task: MNIST hand-written digit image classification task with n = 15 nodes out of which f = 5 might be Byzantine.

Adversarial behaviors: The Byzantine nodes apply either of the following:

- *Label-flipping*: shift the label of each image $0123456789 \rightarrow 1234567890$
- Sign-flipping: send the inverse of the local gradient $\mathbf{g}_{t}^{(i)} \to -\mathbf{g}_{t}^{(i)}$

Training accuracy of a CNN along the learning procedure on MNIST. On the **left** *label-flipping* attack and on the **right** *sign-flipping* attack.

Recall the challenge of uncertainty:

Recall the challenge of uncertainty:

Main idea: Let us get the uncertainty smaller to obtain better convergence!

Option 1: Mini-batch SGD & Dynamic Sampling

\rightarrow Each honest worker *i*

• Samples a batch of b_t points

$$B_t^{(i)} = \{(x_1, y_1), \dots, (x_{b_t}, y_{b_t})\}$$

• Computes and send

$$g_{t}^{(i)} = \frac{1}{b_{t}} \sum_{\substack{(x,y) \in B_{t}^{(i)}}} \nabla \ell(h_{\theta_{t}}(x), y)$$

→ Server updates & broadcasts $\theta_{t+1} = \theta_t - \gamma F\left(g_t^{(1)}, \dots, g_t^{(n)}\right)$

Option 1: Mini-batch SGD & Dynamic Sampling

Each honest worker i

• Samples a batch of b_t points

$$B_t^{(i)} = \{(x_1, y_1), \dots, (x_{b_t}, y_{b_t})\}$$

• Computes and send

$$g_t^{(i)} = \frac{1}{b_t} \sum_{(x,y) \in B_t^{(i)}} \nabla \ell(h_{\theta_t}(x), y)$$

→ **Server** updates & broadcasts $\theta_{t+1} = \theta_t - \gamma F\left(g_t^{(1)}, \dots, g_t^{(n)}\right)$

Pros and cons of the method:

- Reduces the noise at every step $\sigma^2 \rightarrow \frac{\sigma^2}{b_t}$
- Need large b_t to work which inflates the computationnal cost of the method

Controlling Uncertainty Drift with Momentum

• Honest node *i* computes

$$m_t^{(i)} = \beta m_{t-1}^{(i)} + (1 - \beta) g_t^{(i)},$$

where $m_0^{(i)} = 0$ and $\beta \in [0, 1)$.

• Server updates & broadcast

$$\theta_{t+1} = \theta_t - \gamma F\left(m_t^{(1)}, \dots, m_t^{(n)}\right)$$

Controlling Uncertainty Drift with Momentum

Pros and cons of the method:

- Initially introduced to accelerate the learning when $\sigma^2 = 0$, see Polyak (1964)
- Can also be used to **control uncertainty** when $\sigma^2 > 0$
- Way harder to analyze (momentum drift vs noise reduction)
Key ingredient of the analysis: In short, we have that

$$\mathbb{E}\left[\left\|m_t^{(i)} - \overline{m}_t\right\|^2\right] \in \mathcal{O}\left(\sigma^2 \ (1-\beta)\right), \text{ where } \overline{m}_t := \frac{1}{(n-f)} \sum_{i \in H} m_t^{(i)}.$$

Then choosing the right momentum coefficient β (essentially) yields the result

 \rightarrow Eluding quite some technicalities (especially on the momentum drift)

Key ingredient of the analysis: In short, we have that

$$\mathbb{E}\left[\left\|m_t^{(i)} - \overline{m}_t\right\|^2\right] \in \mathcal{O}\left(\sigma^2 \ (1-\beta)\right), \text{ where } \overline{m}_t := \frac{1}{(n-f)} \sum_{i \in H} m_t^{(i)}.$$

Then choosing the right momentum coefficient β (essentially) yields the result \rightarrow Eluding quite some technicalities (especially on the momentum drift)

Convergence result in the homogeneous case Farhadkhani et al. (2022, 2023):

Assumes *F* is an (f, κ) -robust averaging and β is chosen "well-enough". Then setting $\hat{\theta} := \theta_{T+1}$, the algorithm satisfies (f, ε) -Byzantine resilience with

$$\varepsilon \in \mathcal{O}\left(\left(\kappa + \frac{1}{(n-f)}\right) \frac{\mathcal{K}_{\mathcal{L}_H} \sigma^2}{T}\right)$$

Same setting as before. Up without momentum ($\beta = 0$)

Same setting as before. Up without momentum ($\beta = 0$) and down with momentum ($\beta = 0.99$)

Take-home messages

General take-home messages:

- Distributed Learning unlocks the use of machine learning in high-stack applications and is driving research forward...
- ... but standard distributed learning solutions are not robust to misbehaving nodes (a.k.a. Byzantine)

General take-home messages:

- Distributed Learning unlocks the use of machine learning in high-stack applications and is driving research forward...
- ... but standard distributed learning solutions are not robust to misbehaving nodes (a.k.a. Byzantine)

Technical solutions:

- First of all, use robust aggregation rules (median, trimmed mean, etc.).
- Second, reduce the noise of the stochastic gradients (e.g., using momentum).

General take-home messages:

- Distributed Learning unlocks the use of machine learning in high-stack applications and is driving research forward...
- ... but standard distributed learning solutions are not robust to misbehaving nodes (a.k.a. Byzantine)

Technical solutions:

- First of all, use robust aggregation rules (median, trimmed mean, etc.).
- Second, reduce the noise of the stochastic gradients (e.g., using momentum).

Future directions:

- Understand the impact of data heterogeneity in (robust) federated learning
- How to combine robustness with other concerns (privacy, fairness, bias, etc.)
 → Nirupam's talk

Thanks for listening!

References

- Bertsekas, D. and Tsitsiklis, J. (2015). *Parallel and distributed computation: numerical methods*. Athena Scientific.
- Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. (2017). Machine learning with adversaries: Byzantine tolerant gradient descent. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, *Advances in Neural Information Processing Systems 30*, pages 119–129. Curran Associates, Inc.
- Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning. *Siam Review*, 60(2):223–311.
- Chen, Y., Su, L., and Xu, J. (2017). Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. *Proceedings of the ACM on Measurement and Analysis of Computing Systems*, 1(2):1–25.
- Farhadkhani, S., Guerraoui, R., Gupta, N., Hoang, L.-N., Pinot, R., and Stephan, J. (2023). Robust collaborative learning with linear gradient overhead.
- Farhadkhani, S., Guerraoui, R., Gupta, N., Pinot, R., and Stephan, J. (2022). Byzantine machine learning made easy by resilient averaging of momentums. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S., editors, *International Conference on Machine Learning, ICML 2022, 17-23 July* 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 6246–6283. PMLR.

- Lamport, L., Shostak, R., and Pease, M. (1982). The byzantine generals problem. *ACM Trans. Program. Lang. Syst.*, 4(3):382–401.
- Polyak, B. (1964). Some methods of speeding up the convergence of iteration methods. *USSR Computational Mathematics and Mathematical Physics*, 4:1–17.
- Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. *Mathematical statistics and applications*, 8(37):283–297.
- Xie, C., Koyejo, O., and Gupta, I. (2018). Generalized byzantine-tolerant sgd.
- Yin, D., Chen, Y., Kannan, R., and Bartlett, P. (2018). Byzantine-robust distributed learning: Towards optimal statistical rates. In *International Conference on Machine Learning*, pages 5650–5659. PMLR.