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Standards of Byzantine learning



The Byzantine threat model in parameter-server

• n workers - one parameter-server

• Some workers may crash or be malicious

• We consider the standard Byzantine

threat model Lamport et al. (1982)

• Up to f < n/2 workers may be Byzantine

Practical objective: Find, despite the presence of up to f Byzantine workers, an

η-critical point of Q, i.e., the server outputs θ̂ ∈ Rd such that

E
[
∥∇Q

(
θ̂
)
∥2
]
≤ η
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Standard approach to confer Byzantine resilience

Byzantine-resilient parameter-server SGD:

At every step t = 1, . . . ,T

1. Worker i computes & sends a gradient g
(i)
t

→ A Byzantine worker j can send anything for g
(j)
t

2. Server updates with a non-linear rule F & broadcasts

θt+1 = θt − γF
(
g
(1)
t , · · · , g (n)

t

)

One of the main challenges is uncertainty:

Essentially: the bigger σ, the harder it is to defend against Byzantine workers
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Privacy in distributed ML with

honest-but-curious server



Privacy threat(s): External threat and curious server

• Privacy threats can come from several

sources (internal or external)

• Curious parameter-server:

→ hacking/corruption of the machine

→ curious service provider (e.g, in API)

Folklore belief: sending gradients is private because raw data is not shared

→ Massive privacy leakage can occur with gradients Zhu et al. (2019)

→ Need to rethink the scheme to make it more private
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Open problem 1: Cryptographic primitives

Cryptographic scheme on the communications,

e.g., Homomorphic encryption Paillier (1999)

• very active area of research in ML

• difficult to scale to large models

• not very adapted to non-linearity

Open problem 1: Find ways to compute F in this very challenging setting

Alternative solution: differential privacy?
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Can we combine Byzantine

learning and differential privacy?



Differential Privacy (Recall)

Differential privacy, introduced in Dwork et al. (2014), the standard for privacy in ML

Basic idea: randomize the workers’ behavior to provide privacy

Randomized 
  algorithm

Randomized 
  algorithm Adversary

Gradients 

Gradients' 

The adversary is not able to say whether the change in the gradients is

due to the change in the workers data or to randomization
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Differential privacy & Noise injection mechanisms

Gaussian mechanism: Worker i computes and sends a noisy gradient

g̃
(i)
t := g

(i)
t +N

(
0, s2Id

)
; Balle and Wang (2018)

• Easy to implement and efficient

• Easy to analyze even for complex models

• Privacy guarantee grows with s2

• Great ...

... but does this combine well with Byzantine learning?
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Byzantine learning and privacy do not trivially combine

By definition privacy make uncertainty grow:
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Byzantine learning and privacy do not trivially combine

By definition privacy make uncertainty grow:

Injecting noise to get privacy makes Byzantine resilience much harder

→ (α, f )-Byzantine resilience in Guerraoui et al. (2021)
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Model size grows exponentially in modern day ML

Based on: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

10



Model size grows exponentially in modern day ML

Based on: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

10



Avenues for combining Byzantine

learning and differential privacy



Avenue 1: improving Byzantine learning theory

Injecting noise to get privacy makes Byzantine resilience much harder

→ (α, f )-Byzantine resilience in Guerraoui et al. (2021)

Also shows that (α, f )−Byzantine resilience tends to overrate the impact of noise

Recent developments:

• (α, f )-Byzantine resilience is too stringent to be met Karimireddy et al. (2021)

• Alternative definition with tightened analysis Farhadkhani et al. (2022)

→ We believe this definition to better combine with privacy (ongoing work)
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Avenues (2 & 3): adapt the system to overcome the issue

Dimensionality reduction:

• Use compression/dimensionality reduction to have smaller model size d

• Use coordinate-wise gradient descent to reduce the size of effective

gradients Damaskinos et al. (2021) and Mangold et al. (2022)

Rebuild some trust in the parameter-server:

• Use new hardware/system architecture to enforce verifiable computing

• With a trusted server, we can relate the problem to robust statictics where

combining robustness and privacy is much easier Dwork and Lei (2009)
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