
Online Payments by Merely Broadcasting Messages

(Extended Version)

Daniel Collins, Rachid Guerraoui, Jovan Komatovic,
Ma�eo Monti, and Athanasios Xygkis

EPFL

Matej Pavlovic
IBM Research

Petr Kuznetsov
LTCI, Télécom Paris

Institut Polytechnique Paris
Yvonne-Anne Pignolet

DFINITY
Dragos-Adrian Seredinschi

Informal Systems
Andrei Tonkikh

National Research University
Higher School of Economics

Abstract—We address the problem of online payments,
where users can transfer funds among themselves. We

introduce Astro, a system solving this problem e�ciently in

a decentralized, deterministic, and completely asynchronous

manner. Astro builds on the insight that consensus is

unnecessary to prevent double-spending. Instead of consen-

sus, Astro relies on a weaker primitive—Byzantine reliable

broadcast—enabling a simpler and more e�cient implemen-

tation than consensus-based payment systems.

In terms of e�ciency, Astro executes a payment by merely

broadcasting a message. �e distinguishing feature of Astro

is that it can maintain performance robustly, i.e., remain

una�ected by a fraction of replicas being compromised or

slowed down by an adversary. Our experiments on a public

cloud network show that Astro can achieve near-linear

scalability in a sharded setup, going from 10K payments/sec

(2 shards) to 20K payments/sec (4 shards). In a nutshell,

Astro can match VISA-level average payment throughput,

and achieves a 5x improvement over a state-of-the-art

consensus-based solution, while exhibiting sub-second 95th

percentile latency.

I. Introduction

Online payment systems promise secure �nancial trans-
actions despite distrustful parties. Transactions need to be
processed correctly despite crashes and even Byzantine (i.e,
malicious) behavior of a fraction of the participants [54].
Popular examples of payment systems include centralized
solutions such as PayPal or VISA, as well as decentralized
ones like Bitcoin [66] and Ethereum [81]. Numerous newer
alternatives are also appearing, claiming new grounds in
terms of performance or security [2], [10], [37], [39].

While many payment systems [10], [81] allow for more
general transactions (known as smart contracts) [27], in
this paper we focus exclusively on payments: allowing a
participant Alice to transfer funds to a bene�ciary Bob
if Alice’s balance is high enough. Payments represent the
largest application of blockchains today, they have driven
blockchain systems from their very beginning (Bitcoin) and

Author names appear in alphabetical order. �is is an extended version
of a conference article, appearing in the proceedings of the 50th IEEE/IFIP
Int. Conference on Dependable Systems and Networks (DSN 2020). �is
work has been supported in part by the European grant 862082, AT2 –
ERC-2019-PoC and in part by a grant from Interchain Foundation.

continue to do so (Facebook’s Libra and many others [32],
[35], [45], [46], [58], [63], [68], [78]).
We introduce Astro, a decentralized payment system ca-

pable of matching the performance of the largest centralized
solutions (e.g., 65K peak, 7K average transactions per
second, as recently reported by VISA [77]) for payments.
Astro provides honest participants with robust perfor-

mance, namely stable throughput and latency; this holds
independently of network scheduling (i.e., asynchrony) and
of compromised replicas, as long as no more than 1/3 of the
replicas are a�ected. Systems building on total order (i.e.,
agreement), in contrast, are o�en susceptible to throughput
degradation due to a single slow replica, typically the leader.
�is is an issue that received signi�cant a�ention in the
literature [9], [15], [29], [34], [64], which we discuss in detail
(§VII) and also quantify experimentally (§VI-D).
An important insight underlying Astro is that totally

ordering all payments can be avoided. Indeed, recent theo-
retical results show that total order (and hence consensus) is
not necessary for preventing double-spending [45], [46]. �e
main contribution of this paper is to apply this insight by
building, for the �rst time, an asynchronous deterministic
payment system that is decentralized and consensus-free,
and reporting on the empirical evaluation of this system.
Roughly speaking, instead of requiring a total order, we

give clients direct control over (the ordering of) the payments
they initiate. Prior solutions require agreement—usually via
an expensive consensus protocol [11], [36], [79]—on the
order across the payments of all clients. Each client in Astro
independently orders their payments, thus maximizing the
degree of concurrency and improving e�ciency. As a result,
a payment operation essentially reduces to broadcasting a
message. A weak broadcast primitive, called Byzantine reli-
able broadcast (brb) is su�cient for this purpose [18], [43],
[46]. �is primitive can be implemented in an asynchronous
network, unlike consensus and total order broadcast [36].
�e performance of Astro, even in uncivil executions, is
only limited by the speed of honest participants.
To record payment operations, Astro maintains a log

separately for each client. Whenever Alice makes a new
payment, she announces—through the broadcast layer—1

her intent to record this payment in her (replicated) log.
Payments in her log are ordered by sequence numbers
she assigns herself. Astro guarantees that only Alice, the
spender, may record new payments in her log; we call this
abstraction an exclusive log, or xlog for short.
Essentially, preventing Alice from double-spending means

preventing her from reusing sequence numbers. To do so,
the broadcast layer in Astro provides Byzantine resilience.
�is ensures that a malicious client cannot broadcast two
di�erent payments with the same sequence number. For
example, Alice cannot broadcast a payment a for bene�ciary
Bob with sequence number s, and for that same sequence
number, announce a di�erent payment a’ for bene�ciary
Carol. At most one of these con�icting payments passes
through the broadcast layer. As a result, Alice cannot
double-spend.

Astro distinguishes between clients of the system and
replicas that operate the payment system. Clients usually
connect to the system infrequently to submit payments and
check their balance. Intuitively, each client is a lightweight
participant and thus relies on a certain replica—called a
representative—to broker her payments via broadcast. Nev-
ertheless, each client controls the ordering of her own
payments. Replicas maintain the system state (i.e., client
xlogs), remain well-connected to each other, and implement
the broadcast-based replication layer. Payments are safe and
live as long as the spender and 2/3 of the replicas, including
the representative replica handling the request, are correct.

�is distinction between client and replica allows the
number of clients in Astro to scale independently of repli-
cas; a client may, of course, be its own representative.
�e broadcast layer (implemented by replicas) relies on
quorum systems [60] to ensure Byzantine resilience, and
consequently does not scale beyond tens or hundreds of
replicas. �e number of clients, on the other hand, can be
orders of magnitude larger.

For pedagogical reasons, we proceed in an incremental
manner. We �rst discuss an implementation of Astro with-
out using digital signatures, before moving to a more e�-
cient scheme with digital signatures and fewer messages. To
scale the number of replicas in Astro, we employ a sharding
scheme: We partition the system state and replicate each
partition among a subset of replicas. Sharding a payment
system is di�cult if payments need to be totally ordered
(i.e., based on consensus): Approving a cross-shard payment
requires all involved shards to coordinate, usually via a 2PC
protocol [51], [84]. We sidestep this major di�culty because
the shard of the spender can—in our case—unilaterally ap-
prove a cross-shard payment. Astro requires no cross-shard
coordination on the critical path of payment execution.
�e bene�ciary receives her funds via an asynchronous
noti�cation mechanism a�er the spender’s shard approves
it. Again, for simplicity of presentation, we present �rst the
non-sharded case before explaining the sharded solution.

We evaluate Astro on a public wide-area cloud network
(Amazon EC2). We show that even without sharding and
even in synchronous and failure-free executions, Astro
outperforms a state-of-the-art consensus-based payment
system. Considering four shards with 52 replicas per shard,
Astro can sustain up to 20K payments per second at sub-
second (95th percentile) latency. But more importantly, As-
tro provides robust performance: In executions where some
replica crashes or su�ers from high network latencies, over-
all throughput is una�ected (except for the failed replica).
Leader-based consensus systems can experience throughput
degradation in such situations, to the point where payment
execution blocks altogether when the leader is a�ected, as
we show empirically.
Contributions. We design Astro with a focus on payments
for a permissioned model. Our system lacks some capabilities
compared to mature blockchains (e.g., Sybil resistance, smart
contracts, or full decentralization as Bitcoin or Ethereum)
or global payment systems (e.g., negative balance, fraud
detection as VISA). We do not intend Astro to replace such
systems, but rather demonstrate the e�ciency and power
of broadcast for improving existing solutions.
Astro circumvents consensus-inherent complexities, be-

ing the �rst payment system that is completely asyn-
chronous, deterministic, and guarantees robust perfor-
mance. In summary:
1) Astro introduces the abstraction of an exclusive log:

A record of client payments uniquely controlled by
a certain client. Astro maintains the consistency of
exclusive logs through a weak broadcast primitive,
thus maximizing concurrency and e�ciency.

2) Astro is fully asynchronous, including support for an
asynchronous sharding mechanism for scalability.

3) Our Astro implementation can match the performance,
with respect to payments, of centralized solutions (e.g.,
VISA) in a robust manner.

�e rest of this paper is organized as follows. We �rst
overview Astro (§II) and then detail its payment protocol
(§III). We describe our two implementations of Astro (§IV),
and present our asynchronous sharding (§V) scheme. �en
we discuss a thorough experimental evaluation of Astro
(§VI) and present related work (§VII). In the appendix of
this paper, we provide additional details on asynchronous
recon�guration (§A) and the broadcast layers of Astro (§B).

II. Overview
At the heart of Astro lie two building blocks that are

closely related to each other. �ese distinguish our payment
system from prior solutions, namely: (1) exclusive logs, or
xlogs, and (2) a broadcast-based replication layer.
Exclusive Logs. An xlog is an append-only log comprising
all the outgoing payment operations initiated by a certain
client. Intuitively, the xlog of Alice can be seen as her
personal ledger of expenditures. Alice is exclusively allowed2

0
spender: Bob
beneficiary: Alice

amount: $43
sn: 1

Payment

1

xlogs
Alice Bob

…

0

1

0

1

Carol

2

Fig. 1: System state in Astro, consisting of multiple xlogs
(exclusive logs). Each xlog contains payments operations having
the same spender (i.e., belonging to the same client). For example,
Bob’s xlog comprises two operations; the second of these is a
payment of $43 from Bob to Alice, having sequence number 1.
to append payments to her xlog, and we refer to Alice as
the owner of her log.
It is Alice herself who establishes the ordering of payment

operations in her xlog, by assigning a sequence number to
each payment. Besides a sequence number, each payment
also speci�es the spender (which is always Alice in this
case), the amount, and the bene�ciary of the payment.

Astro’s state consists of multiple xlogs, one per client, as
we sketch in Figure 1. In the basic version of Astro, each
replica holds a copy of the entire state (we revise this to
consider sharding in §V).

In a static system, storing xlogs could be completely
avoided, by only storing balances and a single sequence
number for each client. Storing the xlogs is crucial for
recon�guration of Astro, i.e., for dynamically changing
system membership (§A) and to enable auditability.
Consistent Replication of xlogs. �e goal of the repli-
cation layer in Astro is to keep all xlogs consistent across
replicas despite Byzantine failures. To do so e�ciently, we
exploit an idiosyncrasy of xlogs, namely that each such
log restricts append access to the (authenticated) owner
client. Consequently, we never have to deal with concurrent
modi�cations on a xlog. Each client can modify their own
xlog autonomously: Astro supports concurrent modi�cation
of any number of xlogs.

Each client is associated with a single replica acting as its
representative. A single replica can represent many clients.
�e representative is in charge of broadcasting the client’s
payments to other replicas, and corresponds to a broker
or a bank. Akin to a real bank, only the representative
can broadcast outgoing payments for a client’s xlog. All
payments still have to be ordered and submi�ed by the
client. Unlike with banks, however, multiple replicas in
Astro replicate each client’s data (xlog).

A client performs a payment by submi�ing it to her
representative r. Replica r ensures that all copies of the
client’s xlog are updated consistently. To this end, replicas
implement a broadcast primitive guaranteeing the following
crucial property: no client can announce two con�icting
payments (i.e., with the same spender) for the same se-
quence number, despite Byzantine clients and/or replicas. In
other words, Astro guarantees total order within—but not
across—xlogs, departing from prior designs that employ a
total order across all payments (Figure 2). From the clients’
perspective, Astro provides FIFO guarantees [49], [56].

Bob
0

1

xlogs
Alice Bob

0

b

br
oa

dc
as
treplica

Alice
b

b

b
ba a

a

a

a

b

ar0

r1

r2

r3sk 2

1

submit

submit

sk

Fig. 2: Payment protocol overview in Astro. When Alice wants
to make a payment a, she simply submits a to her representa-
tive replica r1. �is replica handles the broadcasting of Alice’s
payment. Eventually, all correct replicas deliver a, append this
payment to Alice’s xlog (on position 2), and update client balances
accordingly to re�ect this payment.
As we pointed out, current decentralized payment sys-

tems achieve consistent replication by executing a consen-
sus protocol [10], [51], [66], while also tackling broader
problems (e.g., implementing smart contracts). In many
cases, consensus poses a performance bo�leneck and is
the usual suspect in problems regarding correctness or
complexity [1], [24], [29], given its numerous impossibilities
and inherent tradeo�s [11], [36], [40], [64], [79].
In Astro, we replace the consensus building block with a

broadcast layer. Formally, Astro builds on Byzantine reliable
broadcast (brb). �is should not be confused with classic
Byzantine Agreement (ba), which is unsolvable in the asyn-
chronous model we assume [36]. �e brb primitive is not
novel, appearing in the literature for over 30 years, starting
with Bracha & Toueg [18], [19]. �e crucial di�erence to
ba that allows asynchronous implementations of brb is
termination: ba always guarantees termination, whereas
brb does not guarantee this property if the spender is
faulty [45]. Stated di�erently, if the spender client proposes
two con�icting payments (double-spending) under brb, it is
possible that no payment will ever execute.

III. Payments in Astro
Astro is a replicated system running on N replicas of an

asynchronous network. �e replicas implement a broadcast-
based replication layer and maintain the full system state,
which they update consistently to re�ect client payments.
Both clients and replicas hold an identifying public/secret
key-pair. We assume that (1) replica key-pairs are dis-
tributed in advance among all replicas, which makes Astro
a permissioned payment system, and (2) the mapping of
clients to their representative replicas is publicly known. We
assume less than N/3 of replicas to be Byzantine. �is is a
standard assumption, but we revisit this aspect later, when
we introduce partial replication via sharding (§V). We now
describe the basic payment protocol.
At a high level, payment execution comprises three steps:
1) �e client submits a payment a to her representative.
2) �e representative broadcasts a to all replicas.
3) Replicas locally approve payment a and append it to

their local copy of the corresponding client’s xlog.
If the client and representative replica are both correct, each
of these three steps is guaranteed to terminate. A correct
client, however, is una�ected by other Byzantine clients.
Speci�cally, no client will ever be able to double-spend or3

prevent any other client from performing payments, as long
as less than 1/3 of replicas are malicious.

We now describe the three aforementioned steps in detail.
For presentation simplicity, we use pseudocode inspired by
Golang which we assume to execute atomically.
Submitting a Payment. In Listing 1 we describe the
algorithm a client Alice implements to submit a payment.
First, she creates a payment message comprising the identity
of the spender (herself), the sequence number she assigns to
this payment, as well as the identity of the bene�ciary, and
the amount. Alice then increments her sequence number,
and �nally sends the payment to her representative replica
through an authenticated channel (line 7).
1 @executes at spender Alice
2 @local state: Client Alice;
3 Sequence number mySN;
4 func Pay(Client b, Amount x):
5 a := 〈Alice, mySN, b, x〉
6 mySN += 1 // Increment our sequence number.
7 Send(a) // Submit the payment to her representative.

Listing 1: Client Alice submits a new payment.

Broadcasting a Payment. When the representative re-
ceives Alice’s payment, it broadcasts this payment among
the replicas using the underlying Byzantine reliable broad-
cast (brb) layer. brb ensures that all correct replicas will
eventually deliver Alice’s message if her representative
replica is correct. �is layer implements a consistency check
ensuring that no two correct replicas deliver a di�erent
message for the same sequence number of a certain client.
We discuss the broadcast layer in more detail later (§IV).
Approving a Payment. Upon delivery of a payment
message from the broadcast layer, each replica locally ap-
proves Alice’s payment, and then se�les it (see lines 13, 14
in Listing 2).
8 @executes at all system replicas
9 @local state: SeqNrMap sn[..] // last SN per client
10 BalancesMap bal[..] // balances per client
11 XLogMap xlogs[..] // xlogs of clients
12 callback Deliver(a)
13 approve(a) // Blocks waiting for approval of this payment
14 settle(a) // Apply the payment locally

Listing 2: A payment a is ready. Each correct replica runs this
callback upon delivering a from the underlying broadcast layer.

Approval. �e approval procedure is described in Listing 3.
Each replica in Astro executes this procedure with the goal
of ensuring two important properties:
1) All Alice’s preceding payments are approved (line 17).
2) Alice has su�cient funds for her payment, as re�ected

by her balance (line 18).
If both Alice and her representative are correct, these

conditions may be unful�lled at replica q only if q has not
yet approved either:
1) Alice’s preceding payment, or
2) Some other payment crediting Alice.

In such a case, q simply waits until both conditions are
satis�ed. Under normal conditions, correct clients would
initiate payments which they can ful�ll straight away.
Nevertheless, it can be useful to allow Alice to initiate
payments despite not having enough funds to se�le them
right away. Such payments (and all subsequent ones) will
not be approved until Alice has su�cient balance.
15 func approve(a)
16 let a be 〈Alice, n, _, x〉
17 wait until sn[Alice] = n - 1 // Approval criterion (1)
18 wait until bal[Alice] ≥ x // Approval criterion (2)

Listing 3: Payment approval. Every replica executes this to
approve a payment a, assuming spender Alice.

Se�ling. As the �nal step in payment execution, each replica
se�les this payment (Listing 4), i.e., updates the balances of
the spender and bene�ciary, updates the sequence number
of the spender client, and records the payment in the
spender’s xlog. Note that maintaining the whole history of
payments in the xlog is not strictly necessary for the safety
of the basic payment protocol. In a static system, storing the
balances and sequence numbers for each client su�ces. Yet,
having this log enables auditability and supports a system
where the set of replicas may change for growth, repair or
recon�guration (§A).
19 func settle(a)
20 let a be 〈Alice, n, b, x〉
21 bal[Alice] -= x // Withdraw from Alice’s balance
22 bal[b] += x // Deposit to bene�ciary
23 sn[Alice] += 1
24 xlogs[Alice].append(a)

Listing 4: Payment settling procedure. Each replica executes
this protocol to transition a payment a to the �nal, se�led state.

Client noti�cation. By default, we assume clients to be
lightweight and intermi�ently connected, so we omit a
speci�c step of notifying clients that their transaction se�led
(or is cleared in the system). It is simple, however, to
achieve end-to-end noti�cation, by having the client query
her representative for the status of the payment. �e la�er
can reply a�er it has �nished with the se�le step.
Checking the Balance. A client can check her balance by
querying her representative r. To obtain the balance, replica
r simply returns the value from the bal state (de�ned on
line 10, Listing 2).

IV. A Tale of Two Versions
We now turn our a�ention to the broadcast layer in

Astro. Replicas use this layer to replicate client payments
consistently, and it is implemented using a brb protocol.
�e brb interface has two methods. First, a replica r can
use Broadcast(a) to reliably send payment a to all replicas
in the system. Second, the Deliver(a) callback triggers at
any correct replica to notify about the delivery of payment
a. �e broadcast layer is aware of the payload a, which
speci�es: the spender s; sequence number n; bene�ciary4

b; and amount x. We denote the pair (s,n) to be the
identi�er of payment a. We now de�ne the properties of the
broadcast layer, inspired by [59], where payment identi�ers
are particularly important:

• Agreement. If a correct replica delivers a payment a
with identi�er (s, n), then no correct replica delivers a
payment a’ 6= a with the same identi�er.

• Integrity. A correct replica delivers a payment a at most
once, and under the condition that a is broadcast by a
replica r.

• Reliability. If the broadcaster replica of payment a is
correct, then all correct replicas eventually deliver a.

• Totality (optional). If a correct replica delivers payment
a, then every correct replica eventually delivers a.

�ere is a rich history of protocols implementing
brb [18], [21], [22], [61]. We mark totality property as
optional because there exist brb protocols which in fact
do not o�er this property by default. Such protocols are ap-
pealing because they are more e�cient. If totality is missing,
however, an adversary can mount a partial payments a�ack
against our payment protocol, as follows. Suppose Alice
issues a payment to Bob, who initially has $0. Let Alice’s
representative rA be malicious, whereas the representative
rB of Bob is correct. In the absence of totality, since rA is
malicious, only rB would deliver and se�le Alice’s payment,
while Bob’s xlog in any other replica still has a balance of
$0. Bob cannot spend the $10 he received, because there are
no 2f + 1 replicas with the updated version of Bob’s xlog.

We implement and evaluate two versions of brb, and thus
obtain two versions of our system: Astro I and Astro II.
Astro I uses a brb protocol [18] that has a similar com-
munication pa�ern to our consensus-based baseline and al-
lows for a fair performance robustness comparison (§VI-D).
Astro II, on the other hand, uses stronger cryptographic
primitives to reduce communication complexity, achieve
higher performance, and enable sharding. Additionally,
Astro II lacks the totality property, so we compensate for
that with an additional mechanism to prevent the a�ack we
mentioned above.

Both brb protocols underlying Astro I and Astro II as-
sume less than a third of replicas to be Byzantine and o�er
the API we speci�ed earlier. We now describe the broadcast
protocols in our systems; for the pseudocode, we refer the
interested reader to the appendix (§B).

A. Broadcast Protocols & Astro Versions

Astro I implements brb based on Bracha’s algorithm [19].
Let a be a payment with identi�er (s, n) that the represen-
tative replica r is broadcasting on behalf of spender client s.
�is protocol relies on authenticated links, e.g., via message
authentication codes (MACs), and comprises three phases.
(1) Prepare. To broadcast payment a, correct replica r
simply sends a to all replicas in the system.

(2) Echo. �e �rst time a replica q receives a payment with
identi�er (s, n), it sends an Echo message for this payment
to all replicas in the system.
(3) Ready. In this last phase of the protocol, every replica q
waits to collect a Byzantine quorum [60] of Echo messages
for tuple (s,n) and then q sends a Ready message. Alterna-
tively, replica q may send a Ready a�er observing f + 1
Ready messages. A correct replica delivers payment a a�er
gathering 2f +1 matching Ready messages for a and a�er
having delivered the previous payment of client s, i.e., the
payment with identi�er (s, n-1).
Observe that Bracha’s protocol entails two phases (Echo

and Ready) of all-to-all communication, i.e., has message
complexity of O(N2). On the plus side, this protocol uses
MACs, thus it is not computationally intensive.
Astro II implements the broadcast layer using a brb proto-
col with linear (O(N)) message complexity. At a high-level,
this protocol employs digital signatures, and also comprises
three phases. �e �rst phase, called Prepare, is identical
to the �rst phase of the broadcast protocol of Astro I. �e
other two phases of this protocol are as follows:
(2) Ack. Upon receiving payment a from replica r, every
replica q veri�es whether there exists a’ 6= a previously
received for identi�er (s, n). If this is not the case, then q
sends a signed Ack message (i.e., a signed hash) of a directly
to replica r. Otherwise, replica q does nothing.
(3) Commit. Upon gathering a Byzantine quorum [60] of
matching acknowledgments for payment a, replica r sends
to all other replicas a Commit message, comprising the
gathered acknowledgments. Each correct replica delivers a
a�er receiving a correct commit message for a.
To prevent the partial payments a�ack, we introduce

dependencies in Astro II. A correct replica that approved
Alice’s payment, unicasts the signed approval called Credit
message to Bob’s representative, and allows Bob to prove
the existence of a payment crediting his account unequiv-
ocably with f + 1 such Credit messages. To this end,
Bob’s representative replica collects and aggregates Credit
messages for the same incoming payment into a dependency
certi�cate for Bob’s xlog. If Bob’s representative fails in any
way, this certi�cate is not lost; the certi�cate is permanently
stored as Credit messages, distributed across the replicas
that approved the payment, so it can be reconstructed
directly from these replicas.
Note that replicas must keep track of used certi�cates,

ensuring that each payment takes e�ect not more than
once. �is way, it is impossible for replicas to mistakenly
apply a dependency twice (e.g., double-deposit, as in a
replay a�ack). Listings 3 and 4 have to be adjusted to take
dependencies into account, see pseudocode in §B.
Certi�cates also play an important role in a sharded envi-

ronment, as they are transferable across shards: �ey enable
Bob to spend the money mentioned in the dependency not
only within his representative’s shard, but also across shards5

(§V). Whenever Bob submits an outgoing payment, his rep-
resentative replica a�aches the accumulated dependencies
alongside the outgoing payment.
Comparison. Astro II is well-suited for environments
where bandwidth is scarce (e.g., WAN), whereas Astro I has
lower computation requirements and is therefore suited for
systems where computing resources are more scarce. Given
a batching scheme, however, we can amortize the cost of
digital signatures in Astro II, as we describe later (§VI-A).
Moreover, we expect the typical deployment of our system
to be a wide-area network where bandwidth is the scarce
resource. Because of these reasons, Astro II has an edge over
Astro I in terms of performance—a hypothesis we quantify
in our experimental evaluation (§VI-C).
�e two systems handle transitive transactions di�er-

ently. Astro I does not reject insu�ciently funded transac-
tions (line 18, Listing 3), instead it queues them until enough
funds arrive. �euing is necessary even with totality,
since di�erent replicas may receive crediting transactions
at di�erent times. Instead, the dependencies mechanism in
Astro II allow the spender’s representative to prove that the
spender has su�cient funds to issue a payment.

�ere is an additional important distinction between
Astro I and Astro II: the la�er is amenable to sharding. To
understand why this is the case, we observe that sharding
requires the approval of payments across di�erent shards.
In other words, some shard s1 has to convince some other
shard s2 that s1 approved a certain payment and s2 can
se�le it. Digital signatures simplify this transfer of trust
between shards, because the payment of a spender from s1
appears as a dependency in the xlog of the bene�ciary in
s2. Replicas in s2 accept this dependency when they verify
it is signed by f + 1 replicas of s1. In the next section, we
provide the full details of the sharding mechanism which
we implement in Astro II.

V. Asynchronous Sharding
So far we described our payment protocol (§III) assuming

full replication. In this model, all replicas maintain a full
copy of the system state (i.e., xlogs) and approve and se�le
every payment. �e full replication architecture is simple
to understand and implement, and excels at small scale.
�is design poses two scalability problems. First, throughput
degrades with increasing replica count (as we observe
experimentally in §VI-C). Second, each replica has to keep
more state as the number of xlogs (i.e., clients) increases.

We now re�ne the architecture of our payment system
with sharding, which Astro II implements. Sharding is a
well-known technique [3], [5], [16], [51], [57], [80], [84],
allowing our system to scale-out in terms of both number
of replicas and number of clients. We de�ne a shard as a
subset of system replicas, and to be associated with a subset
of all xlogs. We use the notation s(·) to denote the shard
to which some replica or client “·” belongs. Importantly,

sharding requires strengthening our assumption from §III,
so that the threshold N/3 on Byzantine replicas applies to
every shard.
Intuitively, each shard in Astro II executes an instance of

the basic payment protocol (§III) for its associated clients.
It also incorporates an additional mechanism that not only
prevents partial payment a�acks, but also supports sharding
seamlessly. �e broadcast step of Astro II is executed in the
shard of the spender, while the Credit messages may be
sent to a representative in another shard.

Let us consider a payment of amount x from spender A to
bene�ciary B and illustrate how Astro II processes it. Let r
be the representative replica of A.
A�er broadcasting and approving the payment of client

A, all honest replicas in shard s(A) unicast a Credit message
to the bene�ciary’s representative in s(B), indicating the
crediting of amount x to the balance of client B. �is
message comprises all details of this payment (including
the sequence number n assigned by client A), as well as
a signature sig indicating the approval of the payment
from the perspective of that replica. �e representative of
B interprets f+1 distinct Credit messages as a dependency
certi�cate, i.e., a proof that the payment has been accepted
by shard s(A). �is dependency certi�cate is stored at the
representative of B and gets added toB’s balance when the
next outgoing transaction issued by B is se�led by the
replicas in shard s(B).
Traditional sharded designs employ a 2PC protocol for

coordinating transactions that span multiple shards [12],
[38]. �e 2PC protocol relies on synchrony and has a
delay of 3 communication steps; each such step usually has
complexity O(m) and in the Byzantine case it can reach
up to O(m2), where m is the size of a shard [38], [41]. In
contrast, our protocol based on the Credit message entails
exactly 1 communication step and has overall complexity
O(m). In our experiments with Astro II implementing the
Smallbank application [33] we observe that this sharding
mechanism has negligible overhead (§VI-C2).

�e insight enabling such a simple sharding mechanism
in Astro is that we decouple payment processing at the
spender from the bene�ciary. In fact, this mechanism is
orthogonal to how a payment is executed inside a shard
(e.g., using a consensus or a broadcast based protocol).

VI. Experimental Evaluation

We now report on the experimental evaluation of our
consensus-free approach to payment systems. We �rst de-
scribe the systems we evaluate, namely Astro I and II and
a baseline based on consensus (§VI-A). We also detail our
evaluation methodology (§VI-B) and present our compre-
hensive evaluation, covering both the common-case and
performance robustness (§§ VI-C and VI-D).

6

A. Systems under Evaluation

We build our baseline on top BFT-SMaRt, a mature state-
of-the-art BFT SMR (i.e., consensus) implementation [15],
used, for example, as the ordering service of Hyperledger
Fabric [74]1. For both Astro systems and BFT-SMaRt under
evaluation we assume the optimal threshold of N = 3f +1
replicas, where f bounds the number of faulty replicas.
Batching in Astro I and II. We employ a 1- or 2-
level batching scheme, depending on the variant of our
system. First, we perform batching at the level of the
broadcast protocol. Note that the �rst step of the broadcast
protocol (Prepare in §IV-A) is identical across our two
systems. Brie�y, some replica i sending a Prepare is the one
assembling a batch of payments—potentially from di�erent
clients—with the goal of amortizing both the cost of message
authentication and network processing overheads.

Second, to reduce the overhead of digital signatures
necessary for the brb and the Credit messages, Astro II
groups together payments for which the bene�ciary clients
have the same representative replica. �us, when a replica i
builds a batch of payments to be broadcast, it includes sub-
batches of payments segregated according to the bene�ciary
replica. As a result, there are as many signatures for Credit
messages as there are sub-batches. All payments in the
batch are processed together during broadcast, while the
payments in the sub-batches are processed together when
se�ling and unicasting.

Even though batching alleviates the computational bur-
den of cryptographic signatures, it relies on the fact that
clients have to trust their replicas for not issuing transac-
tions without the former’s consent. However, our approach
can protect clients from malicious representative behavior
if the same protocol adopts end-to-end client signatures.
Cryptography in Astro II. We used ECDSA on the NIST
P-256 curve provided from the Golang standard library,
which o�ers adequate performance. To avoid cryptographic
operations acting as a CPU bo�leneck, we use one signature
per batch of 256 payments in the broadcast layer. With
this batch size, Astro II’s performance is only limited by
available bandwidth.

B. Evaluation Methodology

We use Amazon EC2 as our experimental platform.
�roughout all experiments, we use commodity-level virtual
machines (VMs) of type t2.medium [8], equipped with 4GiB
of RAM and 2 vCores. Unless we explicitly state otherwise,
we deploy each system so that every replica executes on

1In general, there is a notable di�erence in complexity between
consensus—in particular, the Byzantine-fault tolerant versions—and broad-
cast algorithms. Both Astro implementations require less than 3.5K loc
in Golang. Contrast this with libpaxos [71], a simple consensus imple-
mentation for the crash-only model, stretching over more than 6K loc in
C. At the time of its original publication, the BFT-SMaRt implementation
counted around 13.5K loc in Java [15, §III].

a separate VM. �is avoids creating noise in our results,
which could arise due to performance interference.
Our deployment setup comprises four Amazon EC2 re-

gions in Europe, namely Frankfurt, Ireland, London, and
Paris. On average, the bandwidth and round-trip latency
across machines of these four regions is around 30 MiB/sec
and 20ms, respectively. We deploy the replicas of each
system randomly across the corresponding regions. �is de-
ployment re�ects a scenario where participants are localized
in one geographic region of the globe (Europe). Later in
our experiments, we also introduce network delays at each
replica. As a result, we lessen the e�ect of sub-millisecond
latency between replicas in the same region and obtain more
realistic conditions with larger latencies (§VI-C2).
We use up to 15 VMs to deploy clients. Each request from

a client represents one payment. A request contains three
�elds (the spender and bene�ciary identities, along with the
amount) and the client authentication data. �e bene�ciary
and amount �elds are random, and each payment operation
covers roughly 100 bytes.
For simplicity, we place all client VMs in Ireland. Spread-

ing clients around Europe does not in�uence our results.
Each such VM hosts a varying number of client processes.
�e number of processes varies greatly, depending on each
system and the system size. For instance, to saturate BFT-
SMaRt at system size N = 4, we use around 800 total
client threads; for N = 100, 30 threads are su�cient for
saturation. For Astro, we require more client threads to
reach saturation, since they are capable of higher perfor-
mance. We report the maximum achievable performance:
our experiments assume that all transactions can be se�led
immediately, i.e. clients have enough balance, so transac-
tions can not be blocked due to insu�cient funds.
For throughput, we report on how many payments each

system se�les per second, labeled pps. All experiments have
a runtime of 60 seconds, and we present the average result
across 3 runs. We also plot the standard deviation, but o�en
this is negligible and not clearly visible in the plots.
In BFT-SMaRt, each client keeps connections to all repli-

cas (a design decision of this protocol) [15]. For this reason,
all BFT-SMaRt clients experience similar latencies. In our
results we report on the latency as observed by a random
client. In our Astro systems, each client connects to a single,
random replica. To make all replicas execute payments
(which is the most realistic scenario), clients pick and submit
their workload to a random replica.

C. Performance Evaluation Results

We seek to answer the broad question of how our
asynchronous approach compares in performance, at vary-
ing system sizes, with the consensus baseline. We discuss
microbenchmarks for latency and throughput in a single
shard (§VI-C1), as well as results with the Smallbank [7]
benchmark in a sharded scenario (§VI-C2).7

 1000

 10000

 100000

4 1
0

1
6

2
2

2
8

3
4

4
0

4
6

5
2

5
8

6
4

7
0

7
6

8
2

8
8

9
4

1
0
0

P
e

a
k
 t

h
ro

u
g

h
p

u
t

(p
p

s
)

System size (number of replicas in the system)

Broadcast echo-based system (Astro I)
Broadcast signature-based system (Astro II)

 1000

 10000

 100000

4 1
0

1
6

2
2

2
8

3
4

4
0

4
6

5
2

5
8

6
4

7
0

7
6

8
2

8
8

9
4

1
0
0

P
e

a
k
 t

h
ro

u
g

h
p

u
t

(p
p

s
)

System size (number of replicas in the system)

Consensus-based system (BFT-SMaRt)

Fig. 3: �roughput vs. system size. We measure peak throughput as we increase the number of replicas in di�erent payment system
implementations, one based on consensus (BFT-SMaRt), and two based on broadcast (Astro I and II). We do not employ sharding.

 100

 1000

 10000

 1 10 100
 1000

 10000

L
a
te

n
c
y
 (

m
s
)

Throughput (pps)

BFT-SMaRt

Astro I

Astro II

Fig. 4: Latency/throughput. Performance evaluation of three
payment systems each running at N = 100.

1) Microbenchmarks:
�roughput. In Figure 3 we depict how throughput evolves
as a function of system size. For each system size, we plot
the peak throughput, i.e., before latency saturates. Note the
logscale axis, to be�er capture performance di�erences. We
increase the system size in increments of 6, starting from
the smallest size of 4, until we reach 100.

As an overall observation, our two Astro prototypes
outperform the consensus-based solution at every system
size we investigate. At small size, all systems exhibit their
respective highest throughput. �e consensus-based imple-
mentation using BFT-SMaRt sustains over 10K pps, while
Astro reaches almost 13.5K pps and Astro II sustains 55K
pps. �e 4x improvement of Astro II over Astro I is owed
to the the linear communication complexity of the former
system (§IV-A). As can be seen, however, this bene�t slowly
tapers o� with increasing system size. At maximum system
size (N = 100), the consensus-based system saturates at
334 pps; Astro I sustains 6x higher throughput, being able
to apply 2K pps, and Astro II can sustain 5K pps (a 16x
improvement over consensus and 2.5x over Astro I).
Latency-�roughput. We now explore the di�erence in
performance between the consensus-based baseline and As-
tro I/II at the maximum system size we consider, N = 100.
As before, all systems are running in a single-shard setup.
�e results depicted in Figure 4 show how latency evolves
with respect to throughput. For clarity sake, the y-axis
(latency) starts at 100ms, and we convey order of magnitude
di�erences using logscale axes.

�e consensus-based implementation typically exhibits
sub-second latencies. We do not show the 95th percentile
latencies because they obstruct visibility, but these are
between 1.3 and 1.5 seconds. Latencies in Astro I are

more variable, between 400 and 500ms prior to saturation,
while the 95th percentile latencies are on the order of
one second. Recall that clients connect to random replicas,
which are geographically spread. Astro II exhibits more
stable performance and lower latencies: prior to saturation,
clients observe a con�rmation latency of 200ms on average.
�e 95th percentile latency (at low load) is under 240ms.
�e 99th percentile for all these systems are within the same
order of magnitude as the 95th.
We remark that the latencies for these three systems are

not necessarily at their worst when N = 100. We also
investigate the same execution at N = 10, for instance, and
observe only slightly be�er performance (e.g., latency for
Astro II is 150ms on average). �e latencies do not change
considerably because there is a lot of parallelism inherent in
the underlying quorum-based protocols, both for consensus
and broadcast. �is is intuitive: obtaining one response from
a particular distant replica takes roughly as much time
as obtaining several responses (in parallel) from multiple
distant replicas. Primarily, it is throughput that su�ers in
quorum-based systems, and latency secondarily [29], [76],
[79].
An important observation here is that our evaluation

concerns the critical part of a payment system, the ordering
layer. For the deterministic system model, we are only
aware of prior experiments of this layer which considered
a maximum system size of N = 10, concretely for Hyper-
ledger Fabric [74], which builds on BFT-SMaRt. To conclude
this part of our evaluation, for systems of moderate size—
up to 100 replicas—broadcast-based systems are simpler
and signi�cantly outperform consensus-based solutions for
decentralized payments. Even if Astro relies on broadcast,
it still employs quorum-gathering to achieve consistent
replication; hence the throughput of Astro is inversely
proportional to the system size (akin to consensus-based
solutions). To avoid this throughput decay and scale to
larger systems, we now discuss experiments with sharding.

2) Sharding in Smallbank Application: For a real-world
application workload, we use the Smallbank transaction
family from the BLOCKBENCH framework [33]; this is a
version of the H-Store Smallbank benchmark [25] adapted
to the cryptocurrency se�ing. �e application models bank
accounts, where the owners of these accounts are clients
that can issue several types of transactions. In particular,8

tc
delay (ms)

�roughput (Kilo-pps)
per-shard\total

Latency (ms)
Average\95th %ile

Astro II BFT-S† Astro II BFT-S†

#
of

sh
ar
ds

2 0 7.9\15.7 1.0\2.0 204\279 600\808
2 20 5.1\10.2 0.3\0.5 479\705 2245\2673
3 0 5.1\15.4 1.0\3.1 213\375 600\808
3 20 4.5\13.6 0.3\0.8 368\656 2245\2673
4 0 5.0\20.1 1.0\4.1 213\259 600\808
4 20 4.5\18.1 0.3\1.1 354\620 2245\2673

TABLE I: Smallbank sharded benchmark. Performance results
for up to 4 shards (each N = 52 replicas). †BFT-SMaRt results are
upper-bound values based on a single-shard experiment.
accounts can be of either savings or checking type. Some
transactions model payments across two accounts of the
same owner, while other transactions deal with the transfer
of funds between di�erent owners. For the sake of consis-
tency, hereina�er we refer to bank accounts and their owners
as xlogs and clients, respectively.
Experimental Setup. We associate each client with two
xlogs (for checking and savings). �us same-client transac-
tions at the application level appear as full-�edged payments
between two distinct xlogs in the underlying layer. We use
a multi-shard setup for Astro II, ensuring that both xlogs of
any client belong to the same shard. Whenever a transac-
tion involves di�erent shards, the cross-shard coordination
consists of the Credit message described earlier (§V). For
BFT-SMaRt, we use an equivalent setup.

Each shard consists of N = 52 replicas uniformly spread
among the four EC2 regions of Europe. We execute using
2, 3 and 4 shards (total of 208 replicas); we limit ourselves
to 4 mainly due to �nancial constraints, but also because it
is straightforward to estimate performance at larger scales.
Clients a�ach to a certain replica and simultaneously issue
transactions as prescribed by the Smallbank benchmark,
meaning that 12.5% of the overall number of transactions are
cross-shard. To produce more realistic network conditions,
we introduce arti�cial network delays: We use the tra�c
control (tc) subsystem of the Linux Kernel, and increase
inter-replica latencies by 20ms. Network latency between
replicas in Europe is around 20ms, so having this delay es-
sentially doubles latencies; additionally, this also eliminates
any advantage that may arise due to co-location of some
replicas in the same EC2 region.
Experimental Results. We provide the results in Table I.
We show both per-shard and overall (i.e., total) through-
put for a given latency envelope. Astro II sustains the
highest per-shard throughput when there are 2 shards. As
the number of shards increases (the # column), per-shard
throughput slowly decreases: �is is because intra-shard
payments are more lightweight (lacking the cross-shard
noti�cation mechanism) and the number of intra-shard op-
erations decreases with growing number of shards [84]. We
observe that the 20ms network delay a�ects performance.
�e reason is TCP’s congestion control: Astro II saturates
the links and network delays become the bo�leneck.

As Table I shows, performance in Astro II scales well with

 0

 100

 200

 300

 400

 20 25 30 35 40 45 50 55 60

T
h
ro

u
g
h
p
u
t

 (
p
a
y
m

e
n
ts

/s
e
c
)

Execution history (seconds)

Crash-stop failure

Consensus-Leader
Consensus-Random

Broadcast-Random

Fig. 5: �roughput robustness during crash-stop failures. We
plot throughput when a replica crashes in the consensus-based
system (either the leader or a random replica) and Astro I.
the number of shards. In absolute numbers, Astro II sustains
up to 20K pps using four shards, with average latencies
of around 200ms. �e BFT-SMaRt baseline running on
four shards sustains a total throughput of just above 4K
pps; importantly, these result are only for comparison, and
represent optimistic upper-bounds. In BFT-SMaRt we omit
the cross-shard coordination step, which typically consists
of a 2PC protocol posing signi�cant overhead, thus a fully
working sharded solution would necessarily sustain less
than 4K pps [51], [84].

D. Performance Robustness

We now investigate how our Astro and the baseline react
to two problems that can arise in practice, namely failure
(e.g., crash) and asynchrony (network delays) at a replica.
We consider the impact of these issues when they a�ect a
random replica in each system, as well as the case when
the leader is a�ected in the consensus-based system.
Astro I and Astro II have similar robustness characteris-

tics: they are completely decentralized (there is no leader)
and making a payment only requires broadcasting a mes-
sage. To maximize fairness of comparison, we experiment
with Astro I, as its message pa�ern and cryptographic
primitives (MAC-based channel authentication) are the most
similar to BFT SMaRt.
We study the evolution of throughput within a window

of execution of 40s, ignoring a warm-up period of 20s. For
all these experiments, we introduce asynchrony or failure
a�er 30s elapse. To induce asynchrony, we again use the
tra�c control utility tc with the network emulator queuing
discipline. We always use a delay of 100ms. For instance,
to introduce such a delay on all packets outgoing from
interface eth0 at a replica, we use the following command:

tc qdisc change dev eth0 root netem delay 100ms.
We use 10 clients, each running a single thread. �e goal

is to evaluate these systems below saturation point. If we
introduce failures at saturation, this can lead BFT-SMaRt to
halt or enter a livelock where the system is unable to do
view-change (i.e. leader election). Moreover, at saturation
point Astro can sustain the same throughput independently
of how many replicas accept client operations; this is
because no single replica in our broadcast-based system is a
bo�leneck. In other words, stopping a replica at saturation
point in Astro would not impact throughput, giving an9

 0

 100

 200

 300

 400

 20 25 30 35 40 45 50 55 60

T
h
ro

u
g
h
p
u
t

 (
p
a
y
m

e
n
ts

/s
e
c
)

Execution history (seconds)

Asynchrony

Consensus-Leader-A
Consensus-Leader-B

Consensus-Random
Broadcast-Random

Fig. 6: �roughput robustness during asynchrony. We
show, for N=49, how throughput evolves in the consensus- and
broadcast-based systems during asynchrony (100ms delay for each
outgoing packet) at one replica, either the leader or random.
advantage to our system over the consensus-based solution.
We �rst report results for a system size N = 49. We
run these experiments with larger and smaller systems, but
similar observations emerge as the ones we describe below.
For completeness, we also discuss a set of interesting results
with a larger system size of N = 100.

In Figure 5 we show how the throughput evolves when
we introduce a crash-stop failure at a replica (N = 49). For
consensus, this failure has a severe impact on throughput if
the leader is a�ected (the Consensus-Leader curve), because
the view-change protocol has to execute. �e throughput
drops to 0 while this protocol runs, typically a few seconds.
For larger system sizes, this protocol can take longer to
execute, as we will show later. When a random replica fails
in the consensus-based system (Consensus-Random), there is
a brief decrease in throughput when all clients and replicas
get disconnected from the a�ected replica, but therea�er
performance recovers. In Astro I we stop a random replica
(Broadcast-Random), and therea�er throughput drops from
270 pps to 250 pps, which accounts for the failed replica
which was handling roughly 20 pps from one of the clients.
�is decrease is barely visible in the plots.

Figure 6 shows how asynchrony impacts the performance
in the two systems (N = 49). We depict two separate
executions for the case of consensus when the leader is
a�ected, because there are two possible outcomes. First, it
may happen that throughput decreases and remains that
way; this is the Consensus-Leader-A timeline. Second, the
system can go through a view-change (Consensus-Leader-B)
because the leader is too slow or its bu�ers can over�ow
and packets get dropped (in�ating the replica-to-replica
delay). Clearly, initiating a view-change is preferable in this
case, because the throughput penalty is smaller. �ere is a
well-known tradeo�, however, in choosing the view-change
timeout [29], [64]: initiating view-change too aggressively
can lead to frequent leader changes even in good conditions,
which can erode performance on the long-run.

When a random replica is a�ected with asynchrony in
the consensus-based system (Consensus-Random execution
in Figure 6), performance drops brie�y because there is a
quorum switch, i.e., the a�ected replica is replaced by a
di�erent one in the active quorum [11]. For the broadcast-
based system (the Broadcast-Random timeline), asynchrony

 0

 100

 200

 20 25 30 35 40 45 50 55 60

T
h
ro

u
g
h
p
u
t

 (
p
a
y
m

e
n
ts

/s
e
c
)

Execution history (seconds)

Crash-stop failure or asynchrony

Consensus-Fail
Consensus-Async

Broadcast-Fail
Broadcast-Async

Fig. 7: �roughput robustness. We show how throughput
evolves for N = 100 when a crash-stop failure or asynchrony
a�ects the consensus-based system or the broadcast-based system.
a�ects performance in the same manner in which a failure
does. Concretely, the a�ected replica no longer sustains the
same amount of client operations, so the overall throughput
reduces correspondingly.
We also show results for the case of a larger system size

(N = 100) in Figure 7. �ere are four timelines in this
execution, as follows. For the consensus-based solution, we
show what happens when there is either a crash-stop failure
or asynchrony at the leader. In the former case (Consensus-
Fail), the view-change protocol kicks o� and lasts for
roughly 20 seconds, while throughput stays at zero; this
is similar to the Consensus-Leader execution in Figure 5. In
the la�er case (Consensus-Async), performance degrades and
stays that way for as long as the a�ected replica remains the
leader; this is similar to the Consensus-Leader-A in Figure 6.
For the broadcast-based solution we consider the same two
issues a�ecting a random replica. When either of these
issues arises (Broadcast-Fail or Broadcast-Async) throughput
is a�ected correspondingly with the number of operations
that the failed replica is handling (and which is unable
to continue). Note that Astro relies on fate-sharing [28]
between a client and its representative: when a replica stops,
all the associated xlogs naturally stop as well.
We conclude with two general observations. First, Astro

does not su�er from overall (i.e., global) throughput degra-
dation that can happen in leader-based protocols such as
most consensus algorithms. Second, our system does not
rely on timeouts for liveness. Simply put, Astro progresses
at the speed of the network. �ese two advantages are
closely linked, and they both follow from the asynchronous
nature of the broadcast protocol we rely on.

VII. Related Work
Since Nakamoto’s original Bitcoin paper [66], follow-up

payment systems seek to prevent double-spending by estab-
lishing a total order of transactions, i.e., solving consensus.
Consequently, a lot of e�ort has been devoted to improving
the consensus layer.
Dealing with the Consensus Bottleneck. Research on
consensus algorithms has shown signi�cant breakthroughs
and modern protocols quote impressive performance num-
bers [83], [84]. To push performance even further, several
interesting systems address the consensus bo�leneck with
sharding [5], [51], [57], [84], [80]. Approving a cross-shard10

payment, however, requires special coordination [51], [80],
[84]. O�-chain payment networks such as Lightning [68]
and Raiden [67] strive to minimize the impact of con-
sensus protocols. �ey allow parties to move funds from
a blockchain into high-performance payment channels, for
which the �nal balance is se�led back on the blockchain
a�er use. Recent advances in this �eld rely on trusted
hardware to provide an asynchronous protocol for all inter-
actions [55]. �ese results bring noticeable improvements
over Bitcoin, enabling good scalability and very fast pay-
ments. Nevertheless, the underlying problem of consensus
is only reduced, not overcome. In Astro we take a di�er-
ent approach: We provide robust performance by avoiding
consensus protocols altogether.
Performance Instability of Consensus. Recent work
emphasizes the problem that performance of consensus
algorithms hangs on a fragile thread, namely their view-
change sub-protocol [20], [40], [82]. HotStu�, for instance,
proposes to absorb view-change in the common-case con-
sensus algorithm; this sidesteps performance instability but
comes with the cost of a higher common-case latency [82].

Another line of research circumvents the view-change
issue with randomized consensus protocols, such as Hon-
eyBadgerBFT [64] or BEAT [34]. Both are based on work
by Ben-Or et al. [13] combining reliable broadcast (brb)
with binary Byzantine agreement (aba). In a nutshell, these
protocols comprise a broadcast phase (where replicas form
encrypted batches of payments which they disseminate
using brb), an agreement phase (involving N instances of
the aba protocol to agree on a common set of batches), and
a decryption phase (requiring each replica to obtain f + 1
decryption shares). �ese protocols push the performance
of consensus by carefully choosing modern cryptographic
tools and system parameters.

Various leaderless consensus protocols have been pro-
posed, for both crash and Byzantine models [17], [30],
[31], [52], [65]. �ese protocols, however, either make use
of some form of coordinator in corner-cases, or rely on
additional synchrony assumptions, or provide probabilistic
guarantees. For example, a thorough study of the appendix
of [65] reveals that EPaxos only ensures probabilistic live-
ness and, as shown recently [75], has correctness issues.

Astro is deterministic and fully asynchronous. It does not
solve the general consensus problem, but instead focuses on
payments. Since our system relies exclusively on brb and no
ba primitive is necessary, Astro is simpler and more e�cient
than modern leaderless randomized consensus protocols.
Avoiding Consensus Protocols. Recent theoretical re-
sults [45], [46] show that consensus is unnecessary for
implementing a payment system, contrary to popular belief.
For instance, [45] showed that the basic double-spending
problem, as de�ned by Nakamoto [66], can be cast as a
sequential object type and that it has consensus number
1 in Herlihy’s hierarchy [48]. Whilst the observation that

consensus is unnecessary to prevent double-spending in a
theoretical context has been made, we apply this insight for
the �rst time to obtain Astro: a full system solution (design,
implementation, evaluation), that is also e�cient.
�e exclusive logs in Astro resemble con�ict-free repli-

cated data types (CRDTs) [72]. Similar to a CRDT, dif-
ferent xlogs support concurrent updates while preserving
consistency. Since each log has a unique owner, we rule
out the possibility of con�icting operations on each log.
Note, however, that appending a payment to the history of
a client’s xlog A is not commutative, i.e., any two payments
within the same history need to be ordered with respect to
one another. �is is a departure from classic CRDTs, but it
ensures in our case that the state at correct nodes always
converges to a consistent version.
Our xlog abstraction in Astro resembles the acyclic graph

(DAG) in various novel payment systems [26], [47], [50],
[73]. �e distinctive feature of Astro, however, is that con-
sensus is entirely sidestepped—whereas all prior solutions
we are aware of, even those building on a DAG, employ a
consensus algorithm to order payments.
Broadcast Protocols. brb protocols have a long tradition
starting with the algorithms of Bracha and Toueg [18],
[19]. Later work re�ned and improved performance and
properties of these algorithms [22], [59], [61], [69]. Asyn-
chronous veri�able information dispersal algorithms [23]
are closely related to brb protocols, and both of these classes
of protocol represent an essential building block in modern
asynchronous consensus protocols [34], [64].
�ere are several ways to improve the scalability of

broadcast protocols. Sharding—the technique we recalled
out above and we adopt in Astro II—is a clean approach
to scalability, as it allows each shard to maintain the
same (deterministic) properties as a non-sharded system.
Other approaches, such as clustering [41], [70], probabilistic
quorum-based [62], or sample-based [44], typically yield a
design providing probabilistic guarantees.

VIII. Conclusions
Astro is a decentralized payment system that can sustain

20K payments/sec in a deployment of 200 replicas, while
exhibiting sub-second latency. It can do so by not relying
on any consensus layer and thus remaining mostly unaf-
fected by network asynchrony and compromised replicas.
We do not claim Astro to be a silver bullet: we only
focused on payments and did not consider the general
abstraction of state machine replication, e.g., as might be
required by smart contracts. Yet, determining the exact
set of problems (besides payments) that can be addressed
by Astro’s broadcast layer is an open problem. We also
identi�ed several avenues for improving Astro, namely:
(1) a more �exible representation scheme, instead of the
�xed dependency between a client and its representative
replica, (2) use more advanced cryptographic primitives11

(e.g., threshold signatures, key revocation schemes), (3)
a �ne-grained state transfer protocol for recon�guration,
and (4) a hybrid system that incorporates asynchronous
payments and consensus-based smart contracts.

References
[1] Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R., and

Martin, J.-P. Revisiting fast practical byzantine fault tolerance.
arXiv:1712.01367 (2017).

[2] Abraham, I., Malkhi, D., Nayak, K., Ren, L., and Spiegelman, A.
Solida: A blockchain protocol based on recon�gurable byzantine
consensus. CoRR abs/1612.02916 (2016).

[3] Adya, A., Myers, D., Howell, J., Elson, J., Meek, C., Khemani, V.,
Fulger, S., Gu, P., Bhuvanagiri, L., Hunter, J., et al. Slicer: Auto-
Sharding for Datacenter Applications. In OSDI (2016).

[4] Aguilera, M. K., Keidar, I., Malkhi, D., Martin, J.-P., Shraer, A.,
et al. Recon�guring Replicated Atomic Storage: A Tutorial. Bulletin
of the EATCS 102 (2010).

[5] Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., and Danezis,
G. Chainspace: A sharded smart contracts platform. arXiv preprint
arXiv:1708.03778 (2017).

[6] Alchieri, E., Bessani, A., Greve, F., and Fraga, J. E�cient and
modular consensus-free recon�guration for fault-tolerant storage,
2016.

[7] Alomari, M., Cahill, M., Fekete, A., and Rohm, U. �e cost of
serializability on platforms that use snapshot isolation. In 2008
IEEE 24th International Conference on Data Engineering (2008), IEEE,
pp. 576–585.

[8] Amazon. Amazon EC2 instance types. h�ps://aws.amazon.com/ec2/
instance-types/. [Online; accessed 19-Sept-2018].

[9] Amir, Y., Coan, B., Kirsch, J., and Lane, J. Prime: Byzantine repli-
cation under a�ack. IEEE Transactions on Dependable and Secure
Computing 8, 4 (2010), 564–577.

[10] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis,
K., Caro, A. D., Enyeart, D., Ferris, C., Laventman, G., Manevich,
Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G.,
Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolic, M., Cocco,
S. W., and Yellick, J. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the �irteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018
(2018), pp. 30:1–30:15.

[11] Antoniadis, K., Guerraoui, R., Malkhi, D., and Seredinschi, D.-A.
State Machine Replication is More Expensive �an Consensus. In
DISC (2018).

[12] Baker, J., Bond, C., Corbett, J. C., Furman, J., Khorlin, A., Larson, J.,
Leon, J.-M., Li, Y., Lloyd, A., and Yushprakh, V. Megastore: Providing
scalable, highly available storage for interactive services. In CIDR
(2011).

[13] Ben-Or, M., Kelmer, B., and Rabin, T. Asynchronous secure compu-
tations with optimal resilience. In Proceedings of the thirteenth annual
ACM symposium on Principles of distributed computing (1994), ACM,
pp. 183–192.

[14] Bessani, A., Santos, M., Felix, J., Neves, N., and Correia, M. On the
e�ciency of durable state machine replication. In USENIX Annual
Technical Conference (2013), pp. 169–180.

[15] Bessani, A., Sousa, J., and Alchieri, E. E. State Machine Replication
for the Masses with BFT-SMaRt. In DSN (2014).

[16] Bezerra, C. E., Pedone, F., and Van Renesse, R. Scalable state-
machine replication. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (2014), IEEE, pp. 331–
342.

[17] Borran, F., and Schiper, A. A leader-free byzantine consensus algo-
rithm. In Distributed Computing and Networking (Berlin, Heidelberg,
2010), K. Kant, S. V. Pemmaraju, K. M. Sivalingam, and J. Wu, Eds.,
Springer Berlin Heidelberg, pp. 67–78.

[18] Bracha, G. Asynchronous Byzantine agreement protocols. Informa-
tion and Computation 75, 2 (1987), 130–143.

[19] Bracha, G., and Toueg, S. Asynchronous Consensus and Broadcast
Protocols. JACM 32, 4 (1985).

[20] Buchman, E., Kwon, J., and Milosevic, Z. �e latest gossip on BFT
consensus. arXiv preprint arXiv:1807.04938 (2018).

[21] Cachin, C., Guerraoui, R., and Rodrigues, L. Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[22] Cachin, C., and Poritz, J. A. Secure intrusion-tolerant replication on
the internet. In DSN (2002).12

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[23] Cachin, C., and Tessaro, S. Asynchronous veri�able information
dispersal. In 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05) (2005), IEEE, pp. 191–201.

[24] Cachin, C., and Vukolić, M. Blockchains consensus protocols in the
wild. arXiv preprint arXiv:1707.01873 (2017).

[25] Cahill, M. J., Röhm, U., and Fekete, A. D. Serializable isolation for
snapshot databases. ACM TODS 34, 4 (2009), 20:1–20:42.

[26] Churyumov, A. Byteball: A decentralized system for storage and
transfer of value. h�ps://byteball.org/Byteball.pdf (2016).

[27] Clack, C. D., Bakshi, V. A., and Braine, L. Smart Contract Tem-
plates: foundations, design landscape and research directions. CoRR
abs/1608.00771 (2016).

[28] Clark, D. D. �e Design Philosophy of the DARPA Internet Protocols.
ACM SIGCOMM Computer Communication Review 18, 4 (1988), 106–
114.

[29] Clement, A., Wong, E. L., Alvisi, L., Dahlin, M., and Marchetti, M.
Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults.
In NSDI (2009).

[30] Correia, M., Neves, N. F., Lung, L. C., and Veríssimo, P. Low
complexity byzantine-resilient consensus. Distributed Computing 17,
3 (2005), 237–249.

[31] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. Db�: E�cient
leaderless byzantine consensus and its application to blockchains. In
2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA) (2018), IEEE, pp. 1–8.

[32] Danezis, G., and Meiklejohn, S. Centrally banked cryptocurrencies.
In NDSS (2016).

[33] Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., and Tan, K.-L.
BLOCKBENCH: A Framework for Analyzing Private Blockchains. In
SIGMOD (New York, NY, USA, 2017), ACM, pp. 1085–1100.

[34] Duan, S., Reiter, M. K., and Zhang, H. BEAT: Asynchronous BFT
Made Practical. In CCS (2018).

[35] Expert Panel (Forbes Technology Council). 10 Tech Industry
Experts Predict �e Next ’Blockchain Wave’, Feb 13 2019.

[36] Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of
distributed consensus with one faulty process. J. ACM 32, 2 (Apr.
1985), 374–382.

[37] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N.
Algorand: Scaling byzantine agreements for cryptocurrencies. In
SOSP (2017).

[38] Glendenning, L., Beschastnikh, I., Krishnamurthy, A., and An-
derson, T. Scalable Consistency in Sca�er. In SOSP (2011).

[39] Golan-Gueta, G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B.,
Reiter, M. K., Seredinschi, D., Tamir, O., and Tomescu, A. SBFT: a
scalable decentralized trust infrastructure for blockchains. In DSN
(2019).

[40] Guerraoui, R., Hamza, J., Seredinschi, D.-A., and Vukolic, M. Can
100 Machines Agree? arXiv:1911.07966 (2019). h�ps://arxiv.org/abs/
1911.07966.

[41] Guerraoui, R., Kermarrec, A.-M., Pavlovic, M., and Seredinschi,
D.-A. Atum: Scalable group communication using volatile groups.
In Proceedings of the 17th International Middleware Conference (New
York, NY, USA, 2016), Middleware ’16, ACM, pp. 19:1–19:14.

[42] Guerraoui, R., Komatovic, J., and Seredinschi, D.-A. Dynamic
Byzantine Reliable Broadcast [Technical Report]. arxiv:2001.06271
(2020). h�ps://arxiv.org/abs/2001.06271.

[43] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., and
Seredinschi, D.-A. AT2: Asynchronous Trustworthy Transfers. arX-
iv/cs.DC 1812.10844 (2018). h�p://arxiv.org/abs/1812.10844.

[44] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., and
Seredinschi, D.-A. Scalable Byzantine Reliable Broadcast. In DISC
(2019).

[45] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., and
Seredinschi, D.-A. �e Consensus Number of a Cryptocurrency. In
PODC (2019).

[46] Gupta, S. A Non-Consensus Based Decentralized Financial Transac-
tion Processing Model with Support for E�cient Auditing. Master’s
thesis, Arizona State University, USA, 2016.

[47] Hearn, M. Corda: A distributed ledger. Corda Technical White Paper
(2016).

[48] Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (1991), 123–149.

[49] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. Zookeeper: Wait-
free coordination for internet-scale systems. In USENIX ATC (2010).

[50] Karlsson, K., Jiang, W., Wicker, S., Adams, D., Ma, E., van Renesse,
R., and Weatherspoon, H. Vegvisir: A Partition-Tolerant Blockchain
for the Internet-of-�ings. In ICDCS (2018).

[51] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E.,
and Ford, B. Omniledger: A secure, scale-out, decentralized ledger
via sharding. In IEEE S&P (2018).

[52] Lamport, L. Brief announcement: Leaderless byzantine paxos. In Dis-
tributed Computing (Berlin, Heidelberg, 2011), D. Peleg, Ed., Springer
Berlin Heidelberg, pp. 141–142.

[53] Lamport, L., Malkhi, D., and Zhou, L. Vertical paxos and primary-
backup replication. In PODC (2009).

[54] Lamport, L., Shostak, R., and Pease, M. �e byzantine generals
problem. TOPLAS 4, 3 (1982).

[55] Lind, J., Naor, O., Eyal, I., Kelbert, F., Pietzuch, P., and Sirer, E. G.
Teechain: A secure payment network with asynchronous blockchain
access, 2017.

[56] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G. Don’t
se�le for eventual. In SOSP (2011).

[57] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and
Saxena, P. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), ACM, pp. 17–30.

[58] Malanov, A. Cryptocurrency �reat Predictions for 2019. Kasper-
skyLab, November, 2018.

[59] Malkhi, D., Merritt, M., and Rodeh, O. Secure Reliable Multicast
Protocols in a WAN. In ICDCS (1997).

[60] Malkhi, D., and Reiter, M. K. Byzantine quorum systems. In STOC
(1997), vol. 97, pp. 569–578.

[61] Malkhi, D., and Reiter, M. K. A high-throughput secure reliable
multicast protocol. Journal of Computer Security 5, 2 (1997), 113–128.

[62] Malkhi, D., Reiter, M. K., Wool, A., and Wright, R. N. Probabilistic
quorum systems. Inf. Comput. 170, 2 (Nov. 2001), 184–206.

[63] McCorry, P., Möser, M., Shahandasti, S. F., and Hao, F. Towards
bitcoin payment networks. In Australasian Conference on Information
Security and Privacy (2016), Springer, pp. 57–76.

[64] Miller, A., Xia, Y., Croman, K., Shi, E., and Song, D. �e Honey
Badger of BFT Protocols. In CCS (2016).

[65] Moraru, I., Andersen, D. G., and Kaminsky, M. �ere is more
consensus in egalitarian parliaments. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (2013), ACM,
pp. 358–372.

[66] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system.
Whitepaper (2008).

[67] Network, T. R. �e raiden network. h�ps://raiden.network/, 2017.
[Online; accessed 9-September-2019].

[68] Poon, J., and Dryja, T. �e bitcoin lightning network: Scalable o�-
chain instant payments, 2016.

[69] Reiter, M., and Birman, K. How to securely replicate services. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16, 3
(1994).

[70] Scheideler, C. How to Spread Adversarial Nodes? Rotate! In STOC
(2005), ACM, pp. 704–713.

[71] Sciascia, D. LibPaxos3. h�ps://bitbucket.org/sciascid/libpaxos. [On-
line; accessed 19-Sept-2018].

[72] Shapiro, M., Preguiça, N., Baqero, C., and Zawirski, M. Con�ict-
free replicated data types. In Stabilization, Safety, and Security of
Distributed Systems. Springer, 2011.

[73] Sompolinsky, Y., and Zohar, A. Accelerating Bitcoin’s transaction
processing: fast money grows on trees, not chains. IACR Cryptology
ePrint Archive, 2013:881 (2013).

[74] Sousa, J., Bessani, A., and Vukolic, M. A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform. In
DSN (2018).

[75] Sutra, P. On the correctness of egalitarian paxos. CoRR
abs/1906.10917 (2019).

[76] Van Renesse, R., and Schneider, F. B. Chain replication for support-
ing high throughput and availability. In OSDI (2004).13

https://byteball.org/Byteball.pdf
https://arxiv.org/abs/1911.07966
https://arxiv.org/abs/1911.07966
https://arxiv.org/abs/2001.06271
http://arxiv.org/abs/1812.10844
https://raiden.network/
https://bitbucket.org/sciascid/libpaxos

[77] VISA Inc. Visa fact sheet and quarter numbers. h�ps://usa.visa.com/
dam/VCOM/global/about-visa/documents/visa-fact-sheet-april-2019.
pdf and h�ps://s1.q4cdn.com/050606653/�les/doc �nancials/2019/
Q3/Visa-Inc-Q3-2019-Operational-Performance-Data.pdf, 2019.
[Online; accessed 9-September-2019].

[78] Vogelsteller, F., and Buterin, V. EIP 20: ERC-20 Token Standard,
2015. h�ps://eips.ethereum.org/EIPS/eip-20.

[79] Vukolić, M. �e Quest for Scalable Blockchain Fabric: Proof-of-work
vs. BFT Replication. In International Workshop on Open Problems in
Network Security (2015), Springer, pp. 112–125.

[80] Wang, J., and Wang, H. Monoxide: Scale out blockchains with
asynchronous consensus zones. In NSDI (2019).

[81] Wood, G. Ethereum: A secure decentralized generalized transaction
ledger. White paper, 2015.

[82] Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., and Abraham,
I. Hotstu�: B� consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (New York, NY, USA, 2019), PODC ’19, ACM, pp. 347–356.

[83] Yu, J., Kozhaya, D., Decouchant, J., and Esteves-Verissimo, P. Repu-
Coin: Your Reputation Is Your Power. IEEE Transactions on Computers
68 (2018), 1225–1237.

[84] Zamani, M., Movahedi, M., and Raykova, M. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (New York, NY,
USA, 2018), CCS ’18, ACM, pp. 931–948.

Appendix A
Asynchronous Reconfiguration

�e description of Astro is focused on a static system
with a �xed set of replicas and clients, in order to clearly
present its design. For long-lived systems, which we expect
a payment system to be, adding and removing replicas is
desirable, e.g., if participants decide to start/stop using the
payment system, or when replacing old replica machines by
new ones.
Recon�guration of clients is straightforward: each client

has a representative replica r, so adding a client simply
means that r executes a brb instance announcing the new
client; subsequently all replicas start maintaining the xlog
of this new client. Recon�guration of system replicas is a
more challenging problem, which we discuss in the rest of
this section.
In consensus-based systems, recon�guration can be han-

dled by the consensus module. For instance, BFT-SMaRt [14]
and similar systems [53] treat a recon�guration request as
a special request which is totally-ordered just like ordinary
client requests.
Consensus, however, is not always necessary for recon-

�guration. For example, DynaStore [4] and FreeStore [6]
provide solutions for consensusless recon�guration of read-
/write storage in the asynchronous crash-stop model.
�e purpose of this appendix is to brie�y present a line

of research that – we believe – answers in the a�rmative
the question of whether recon�guration is possible for a
payment system in the Byzantine model. �e consequence
is that our payment system does not require consensus
throughout the entirety of its lifetime, which eradicates any
possible argument supporting the necessity of consensus. In
this line of research, we adopt ideas from the FreeStore [6]
protocol, and to account for the Byzantine failure model
we build on Byzantine quorum systems [60]. Admi�edly,
the details of recon�guration are non-trivial and a thorough
explanation of it is an independent publication. Our goal is
to present a high-level overview of our ongoing result.

A. Overview

�roughout the lifetime of a system, each correct replica
passes through a sequence of numbered views. A view is
a set of replicas that a replica considers to constitute the
system. At any point in time, each replica has exactly one
current view.
�e interface of the recon�guration protocol exposes op-

erations Join/Leave. �ose operations consist of broadcast-
ing a Join/Leave message to some view v, which represents
the current state of the system as seen from the perspective
of the joining/leaving replica.
Our recon�guration protocol guarantees that, for a �nite

number of recon�guration requests in any execution, all
replicas converge to a single �nal view which incorporates
every recon�guration request issued in the execution. We14

https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-fact-sheet-april-2019.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-fact-sheet-april-2019.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-fact-sheet-april-2019.pdf
https://s1.q4cdn.com/050606653/files/doc_financials/2019/Q3/Visa-Inc-Q3-2019-Operational-Performance-Data.pdf
https://s1.q4cdn.com/050606653/files/doc_financials/2019/Q3/Visa-Inc-Q3-2019-Operational-Performance-Data.pdf
https://eips.ethereum.org/EIPS/eip-20

say that a view v is installed if some correct replica consid-
ers v its current view and processes payment operations in
v. Moreover, our recon�guration protocol ensures that the
installed views form a sequence. Our state transfer protocol
simply consists of sending all xlogs to the joining replica.
We adapt the payment protocol so that all messages

include the current view of the sending replica. Correct
replicas behave consistently across views with respect to
each payment.

When a replica r observes a view that is more recent
than r’s current view, r pauses payment execution. Roughly
speaking, r resumes execution a�er coordinating with a
quorum of replicas belonging to the new view, and then
r executes payments assuming the membership of the new
view. Since recon�guration is not a very frequent operation,
we expect the overall downtime caused by recon�guration
to be insigni�cant. We evaluate the recon�guration over-
head of joining replicas in the next section.
B. Evaluation

�e experiment of asynchronous recon�guration starts
with a system of N = 4 replicas; subsequently, new replicas
join the system until N = 80, one by one. Note that our re-
con�guration protocol allows batched joins (which we avoid
so that we can measure the latency of the protocol itself),
and that all replicas are randomly distributed across Europe
(§VI-B). During this experiment, the system is quiescent, i.e.
no client submits any payment.

We measure the latency (i.e. time to join) both for
Astro II and BFT-SMaRt in Figure 8. In Astro II, latency
represents the elapsed time between the moment when
the joining replica sends the recon�guration request until
this replica becomes able to participate in the payment
protocol. Latency in BFT-SMaRt represents the elapsed time
between sending the special type of operation by the
View Manager [15] and sending message to the joining
replica that it can start participating in the protocol and
should get up-to-date with the rest of system. �e �rst
data point for Astro II shows slightly higher latency than
for subsequent points, which is due to the �xed overhead
of establishing connections between replicas already in
the system. As Figure 8 shows, latency in BFT-SMaRt is
an order of magnitude higher than in Astro II. We are
not aware of any published numbers on consensus-based
recon�guration latency; we believe that the primary reason
for this di�erence in performance is owed to a simpler, more
e�cient protocol.
C. Dynamic Byzantine Reliable Broadcast

Dynamic Byzantine Reliable Broadcast (dbrb) represents
the continuation of the work brie�y introduced earlier
(§A-A). An in-depth theoretical analysis of dbrb, along with
a thorough proof of its correctness, is provided in [42].

Instead of using brb based on Bracha’s algorithm, Astro I
can adopt dbrb as an underlying broadcast layer. Since dbrb

 0

 0.5

 1

 1.5

 2

 2.5

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

J
o
in

 l
a
te

n
c
y
 (

s
e
c
)

System size ’N’ (includes the joining replica)

Astro II
BFT-SMaRt

Fig. 8: Recon�guration latency. Latency (seconds) of a join
operation at di�erent system sizes, in Astro II and in BFT-SMaRt.

provides the exact same properties (adapted to the dynamic
environment) as those of the broadcast layer (including
totality), no further modi�cations of Astro I are needed.
Given that Astro II does not require the broadcast layer to
provide totality, we can use a modi�ed version of dbrb that
does not provide totality (denoted with qdbrb).
�e algorithm for qdbrb is obtained from the dbrb by

excluding the last “all-to-all” [42, Section 4.3] communica-
tion step. With this modi�cation, qdbrb becomes a direct
replacement of the brb within Astro II.

Appendix B
Broadcast Layer Algorithms

In Listing 5 we sketch the algorithm implementing brb
based on the work of Bracha and Toueg [19]. We use this
algorithm to build the broadcast layer in Astro I.
Astro II uses a brb implementation based on digital

signatures [61], which we detail in Listing 6.
For completeness, we also provide pseudocode describing

the use of dependencies, i.e., the optimization that allows
Astro II to resolve the partial payments a�ack and enable
sharding. To address these issues, the representative replica
broadcasts a message a consisting of a payment together
with the dependencies accumulated by the issuer of the
payment since the last broadcast. More precisely, when a
replica receives a payment from a client, it executes the
steps outlined in Listing 7.
In the life-cycle of a payment, the dependencies of

the spender (Alice) are materialized into balance in her
replicated xlog, while the payment itself becomes a new
dependency for the bene�ciary (Bob). In particular, we
obtain a full picture of the system by just re-de�ning the
original approval and se�ling procedures of Listing 3 and 4
with Listing 8 and 9, respectively. Finally, Listing 10 shows
how to handle the delivery of a proof at the representative
replica of the bene�ciary, which happens a�er a payment
is se�led.

15

1 // Called at replica ’r’ to broadcast a message ’a’.
2 func Broadcast(a):
3 prep := 〈PREPARE, a〉
4 sendToAll(prep) // Send to all replicas.

6 // Process a protocol message m received from replica ’q’ at
7 // replica ’r’.
8 callback receive(q, m = 〈PREPARE, a〉):
9 // Handler for PREPARE messages.
10 let a be {s, ts, _, _}
11 if echoSent[q, (s, ts)] == false:
12 echoSent[q, (s, ts)] := true
13 sendToAll(〈ECHO, q, (s, ts), a〉)

15 callback receive(q, m = 〈ECHO, r, (s, ts), a〉):
16 // Handler for ECHO messages.
17 echoes[r, (s, ts), a] += q
18 if (|echoes[r, (s, ts), a]| ≥ 2F+1) &&
19 (readySent[r, (s, ts), a] == false):
20 readySent[r, (s, ts)] := true
21 sendToAll(〈READY, r, (s, ts), a〉)

23 callback receive(q, m = 〈READY, r, (s, ts), a〉):
24 // Handler for READY messages.
25 readys[r, (s, ts), a] += q
26 if (|readys[r, (s, ts), a]| ≥ F+1) &&
27 (readySent[r, (s, ts), a] == false):
28 readySent[r, (s, ts), a] := true
29 sendToAll(〈READY, r, (s, ts), a〉)
30 if (|readys[r, (s, ts), a]| ≥ 2F+1) &&
31 (delivered[r, (s, ts), a] == false) &&
32 (ts == allTS[s] + 1):
33 delivered[r, (s, ts), a] := true
34 trigger Deliver(a)
35 allTS[s] += 1

Listing 5: brb protocol which we use in Astro I, based on [19].

1 // Called at replica ’r’ to broadcast a message ’a’.
2 func Broadcast(a)
3 prep := 〈PREPARE, a〉
4 // Send the prepare message to all replicas.
5 sendToAll(prep)

7 // Process a protocol message m received from replica ’q’ at
8 // replica ’r’.
9 callback receive(q, m)
10 if (m = 〈PREPARE, a〉)
11 let a be {s, ts, _, _}
12 pending[(s, ts)] := a
13 sig := Sign(m)
14 ackMsg := 〈ACK, (s, ts), sig〉
15 unicast(q, ackMsg) // Reply to replica q with ACK.
16 else if (m = 〈ACK, (s, ts), sig〉)
17 return if invalidSignature(sig)
18 acks[(s, ts)] := acks[(s, ts)] ∪ {(q, sig)}
19 if (|acks[(s, ts)]| == 2f+1)
20 commitMsg = 〈COMMIT, (s, ts), acks[(s, ts)]〉
21 sendToAll(commitMsg) // Broadcast the commit

message.
22 else if (m = 〈COMMIT, (s, ts), proof〉)
23 return if (|proof| < 2f+1) || (invalidSignatures(

proof))
24 a := pending[(s, ts)]
25 // Release payment ’a’ to the payment layer
26 trigger Deliver(a)

Listing 6: brb protocol based on digital signatures, inspired by
early work of Malkhi and Reiter [61], which we use in Astro II.

27 @executes at the representative replica
28 @local state: DepMap deps[..] //dependencies per client

30 callback receive(a):
31 let a be 〈Alice, n, b, x〉
32 Broadcast(〈Alice, n, b, x, deps[Alice]〉)
33 deps[Alice] := {}

Listing 7: Using dependencies in Astro II. Representative
replica broadcasts payment with dependencies.

34 func approve(a)
35 let a be 〈Alice, n, _, x, dependencies〉
36 wait until sn[Alice] = n - 1

Listing 8: Payment approval for brb of Listing 6. Every replica
executes this to approve a payment a, assuming spender Alice.

37 @executes at all system replicas
38 // Used dependencies per client
39 @local state: DepMap usedDeps[..]

41 func settle(a)
42 let a be 〈Alice, n, b, x, dependencies〉

44 // Keep only the never seen before dependencies
45 newDeps = set(dependencies) \ usedDeps[Alice]
46 usedDeps[Alice] = usedDeps[Alice] ∪ newDeps

48 bal[Alice] += balanceOf(newDeps) // Credit balance
49 if bal[Alice] < x: return

51 bal[Alice] -= x // Withdraw from Alice’s balance
52 sn[Alice] += 1
53 xlogs[Alice].append(a)

55 d = (Alice, n, b, x)
56 // Send proof to Bob’s representative (Credit message)
57 trigger unicast(b, (d, Sign(d)))

Listing 9: Payment settling procedure for brb of Listing 6.

Each replica executes this protocol to transition a payment a to
the �nal, se�led state.

58 @executes at the representative replica
59 @local state: DepMap deps[..] // dependencies per client
60 DepMap partialDeps[..]

62 callback DeliverUnicast(proof)
63 let proof be 〈payment, sig〉
64 let payment be 〈Alice, n, b, x〉

66 if !check(proof, payment):
67 return

68 partialDeps[payment].add(proof)

70 // An incoming payment that collects f+1 proofs becomes
71 // a dependency.
72 if len(partialDeps[payment]) = f + 1:
73 deps[Alice].add(partialDeps[payment])
74 delete(partialDeps[payment])

Listing 10: Handling of dependencies for brb of Listing 6.

�e representative replica executes this protocol every time a proof
of an incoming payment is received.

16

	Introduction
	Overview
	Payments in Astro
	A Tale of Two Versions
	Broadcast Protocols & Astro Versions

	Asynchronous Sharding
	Experimental Evaluation
	Systems under Evaluation
	Evaluation Methodology
	Performance Evaluation Results
	Microbenchmarks
	Sharding in Smallbank Application

	Performance Robustness

	Related Work
	Conclusions
	References
	Appendix A: Asynchronous Reconfiguration
	Overview
	Evaluation
	Dynamic Byzantine Reliable Broadcast

	Appendix B: Broadcast Layer Algorithms

