Collaborative Learning as an Agreement Problem

Sadegh Farhadkhani

Principles of Distributed Learning @ PODC 2022

Based on:

Collaborative Learning in the Jungle (fully decentralized, heterogeneous, Byzantine, asynchronous and nonconvex), NeurIPS 2021

Joint work with:

El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê-Nguyên Hoang, Sébastien Rouault

Nodes

(compute and send gradient estimates, update and send models)

Byzantine

(at most f Byzantines out of n nodes)

Asynchronous

No bound on communication delays No timing assumption

$$\nabla \mathcal{L}^{(j)}(\theta) \neq \nabla \mathcal{L}^{(k)}(\theta)$$
$$K := \sup_{j,k \in [n-f], \ \theta \in \mathbb{R}^d} \sup \left\| \nabla \mathcal{L}^{(j)}(\theta) - \nabla \mathcal{L}^{(k)}(\theta) \right\|_2$$

Byzantine, Asynchrony, nonconvex Heterogeneous data

$\theta^{(1)}$ Model drift IN OUT IN $\theta^{(2)}$ $\theta^{(3)}$ Byzantine, Asynchrony, nonconvex Heterogeneous data

IN

all b

OUT

8

Definition

C-Collaborative learning is achieved if all honest nodes achieve approximate agreement and small enough gradient.

 $\begin{aligned} \Delta_2(\vec{\theta}) \leq \delta \\ ||\nabla \bar{\mathcal{L}}(\bar{\theta})||_2 \leq (1+\delta)CK \end{aligned}$

 $\{ \Delta_2(\cdot) = \text{diameter} = \text{maximum distance} \}$

Theorem

Byzantine asynchronous nonconvex heterogeneous C-collaborative learning is equivalent to C-averaging agreement.

(0,1,3)

(7, 2, 6)

(2,3,3)

(1, 6, 5)

(0,1,3)

(7, 2, 6)

(2,3,3)

(0, 1, 3)

(2, 3, 3)

(7, 2, 6)

(0,1,3) (2,2,3)

(2,3,3) (2,3,3)

(7,2,6) (2,3,4)

Definition

C-Averaging agreement is achieved if all honest nodes achieve approximate agreement and estimate well the average. $\Delta_2(\vec{y}) \leq \delta$ $||\bar{x} - \bar{y}|| \leq C\Delta_2(\vec{x})$ $\{\Delta_2(\cdot) = \text{diameter} = \text{maximum distance}\}$

Averaging-agreement

Similar to the classical approximate-agreement. Without requiring the outputs to be in the convex hull. Therefore, we do not need n > (d + 2) f.

Theorem

Byzantine asynchronous nonconvex heterogeneous C-collaborative learning is (essentially) equivalent to C-averaging agreement.

Theorem

There is no solution to Byzantine
asynchronous C-averaging agreement
for n ≤ 3f, nor for C < 2f/(n-f).
 (n = #nodes, f = #Byzantines)</pre>

Corollary

There is no solution to Byzantine
asynchronous C-collaborative learning
for n ≤ 3f, nor for C < 2f/(n-f).
 (n = #nodes, f = #Byzantines)</pre>

(0,1,3) (2,2,3)

(7,2,6) (2,3,4) True average (3,2,4)

Can we solve Byzantine asynchronous C-averaging?

(2,3,3) (2,3,3)

Theorem

Coordinate-wise trimmed mean with reliable broadcasts solves averaging agreement for n > 3f(optimal Byzantine resilience!!), with averaging constant $C = 4f/\sqrt{(n-f)}$.

Theorem

Minimum Diameter Averaging solves
 averaging agreement for n ≥ 6f+1.
 For n >> f, it achieves C ~ 3f/(n-f)
 (quasi-optimal up to a factor 3/2 !!).

Corollary

SGD-modified + RB + ICwTM solves Ccollaborative learning for n > 3f.

In the limit n >> f, SGD-modified + MDA
 solves C-collaborative learning
 for C ~ 3f/(n-f).

Conclusion

We solve decentralized, heterogeneous, Byzantine, asynchronous and nonconvex collaborative learning. We show the equivalence between collaborative learning and averaging agreement. We provide 2 algorithms, each is optimal in a different aspect.

Thank you!

Algorithm

- 1 Fix learning rate $\eta \triangleq \delta/12L$;
- 2 Fix number of iterations $T \triangleq T_{\text{LEARN}}(\delta)$;
- 3 for $t \leftarrow 1, \dots, T$ do

$$\textbf{4} \qquad g_t \gets \texttt{GradientOracle}(\theta_t, b_t);$$

5 $\gamma_t \leftarrow \operatorname{Avg}_{N(t)}(\vec{g}_t, \operatorname{Byz})$ // Vulnerable to Byzantine attacks

$$\mathbf{6} \qquad \boldsymbol{\theta}_{t+1/2} \leftarrow \boldsymbol{\theta}_t - \eta \boldsymbol{\gamma}_t \mathbf{;}$$

7
$$heta_{t+1} \leftarrow \operatorname{AvG}_1\!\left(ec{ heta}_{t+1/2},\operatorname{BYZ}
ight)$$
 // Vulnerable to Byzantine attacks

8 end

- 9 Draw $* \sim \mathcal{U}([T])$ using the fixed common seed;
- 10 Return θ_* ;

Evaluation Setup

Our 4 algorithms vs. vanilla baseline Garfield* - PyTorch Image classification with f=1

*<u>https://github.com/LPD-EPFL/Garfield</u>

Our algorithms have similar behavior to our vanilla baseline.

