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Federated Learning

In every communicaiton round:
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Available clients check in with the server.
Server selects subset of the available clients and broadcasts the latest version of the global model.

Clients trains locally each using its local data starting from the received global model.
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Clients send their local updates back to the server which aggregates them.



Problem: Can we optimize client selection in FL

Challenge 1: Large number of clients
> partial client participation /
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Challenge 2: Heterogeneity (e.g., data, device, behavior) o | ‘
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Problem: Previous approaches rely on selecting participants from the entire available
pool without considering whether they are all appropriate for collaboration at the
current stage of the training process.



Solution: Introduce client filtering in FL
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Solution: Introduce client filtering in FL
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e Filtering Algorithm: identify which clients to be considered at a given stage
of the training. Clients that pass this filter are candidates for client selection.



Solution: Introduce client filtering in FL

Public data
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Filtering Objective. Our filtering objective is to find a subset of clients Stf that approximates a
solution to the following combinatorial maximization problem:
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where C is a sufficiently large constant, such that R(S) is positive, Wf is the weight of the k™ client
in round ¢, and F”(w) £ L Z;nzl ¢ (w;x;) as the loss on the server-held public dataset P, which
has m training data: x1, 2, - , Tpm,.
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Public data

=) _— =) = =
o | j . @ ,j j Solving this problem exactly
—_— = = O — requires exponential queries
| |®] |® Filtering | |® to the objective function!
= = &= Algorithm = &=
Available Clients Filtered-in
Clients

Filtering Objective. Our filtering objective is to find a subset of clients Stf that approximates a
solution to the following combinatorial maximization problem:
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Solution: Introduce client filtering in FL

Public data
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Filtering Objective. Our filtering objective is to find a subset of clients Stf that approximates a
solution to the following combinatorial maximization problem:
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where C is a sufficiently large constant, such that R(S) is positive, Wf is the weight of the k™ client
in round ¢, and F”(w) £ L Z;nzl ¢ (w;x;) as the loss on the server-held public dataset P, which
has m training data: x1, 2, - , Tpm,.



Theoretical guarantees

Theorem 1. Under some assumptions (L-smoothness, u-strong convexity, bounded
variance of stochastic gradients, gradient norms and heterogeneity)
we have:

E[ll Wy —w* 171 < O (5) + 0(0)
The above result guarantees the convergence rate of O (%) of FilFL up to
a certain neighborhood O(¢), which depends on the quality of filtering.

The ¢ term encodes the approximation error of the filtering algorithm.
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Client Filtering enhances FL algorithms

Best test Accuracy over Rounds

CIFAR-10 FEMNIST Shakespeare
FedAvg 68% 70% 45%
FilFL 75% 78% 55%

Tabl1. Best achieved test accuracy for FedAvg vs FilFL
both using PoC as a selection method.



FilFL sensitivity to Hyperparameters
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Figure 4: FilFL (FedAvg with DGF) sensitivity to public dataset size m on Shakespeare dataset with
PoC for client selection, N = 143, n = 100, K = 10, and h = 5.
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Figure 13: FilFL (FedAvg + xGF + PoC) sensitivity to periodicity h



Filtering Behavior
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Figure 5: The number of filtered-in clients, denoted as |S,fc |, for FilFL (FedAvg with xGF), over the
rounds in different settings of CIFAR-10, FEMNIST, and Shakespeare datasets, with available clients

n being 30, 50, and 100, respectively. For FedAvg without filtering, we consider Sf to be equal to S;.



Approximation Ratio

Approximation Ratio. Fig. 6 shows the approximation ratios
of both YGF versions compared to the optimal filtering (OPT)
on CIFAR-10 with N = 200 and n = 10, which we find by
evaluating 2" — 1 combinations. We find that both yGF ver-
sions achieve approximation ratios higher than 0.96, meaning that

R(S]) > 0.96R(OPT) over the multiple rounds. This indicates
that greedy filtering identifies near-optimal combinations of clients.

Filtering Performance. The filtering performance can be measured
by the improved FL performance and the higher approximation ratios.
Since both versions of YGF show similarly high ratios and improved
FL performance, both can be considered effective for filtering.
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Figure 6: Approximation ra-
tios of filtering objective solu-
tion on CIFAR-10 dataset.



Conclusion

We proposed client filtering as a promising technique to optimize client
participation and training in FL.

Our proposed FL algorithm, FilFL, which incorporates our greedy filtering
algorithm, has:

« Theoretical convergence guarantees.

« Better learning efficiency.

* Accelerated convergence.

» Higher test accuracy across different vision and language tasks.

« Potentially more robust selection.
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Test Accuracies
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Figure 7: FiIFL vs FedAvg test accuracies both using PoC as a client selection method.



Assumptions

Assumption 1. Fy,--- , Fy are all L-smooth’.
Assumption 2. F,--- , Fx are all u-strongly convex®.

Assumption 3. Let 1F be sampled from the k-th client’s local data uniformly at random. The
variance of stochastic gradients in each client is bounded® by o2.

Assumption 4. The norms of the stochastic gradients are uniformly bounded by G'°.
Assumption 5. Statistical heterogeneity defined as F* — kE[N] piFy; is bounded, where F™* :=
miny, F(w) and F}' := miny, Fj(v).

Assumption 6. Assume A; contains a subset of K indices randomly selected with replacement

according to the sampling probabilities p1, - - - , pn, with simple averaging for aggregation 1.



Randomized greedy filtering algorithm w/ O(n) complexity

« Let Q={uy,u, ..., u,} be the set of all clients.
 RGF keeps track of two sets X (initially @) and Y (initially Q).

 RGF has n phases and for each phase decides randomly-greedily either to
add to X or remove from Y.

a; = R(X;—1 V) — R(Xi—1)
b = R(Yi—1 \ u;) — R(Yi—1)

a; = min(0,a;) & b; = min(0, b;)

!

« RGF adds client u; with probability p; = afjb_, .

« After deciding about all the clients RGF returns the set of filtered-in clients.



