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In every communicaiton round:

1 Available clients check in with the server.

2 Server selects subset of the available clients and broadcasts the latest version of the global model.

3 Clients trains locally each using its local data starting from the received global model.

4 Clients send their local updates back to the server which aggregates them.



Problem: Can we optimize client selection in FL

Challenge 1: Large number of clients

➢ partial client participation


Challenge 2: Heterogeneity (e.g., data, device, behavior)

➢ optimize client selection


 
Problem: Previous approaches rely on selecting participants from the entire available 
pool without considering whether they are all appropriate for collaboration at the 
current stage of the training process.



Solution: Introduce client filtering in FL



Solution: Introduce client filtering in FL

● Filtering Algorithm: identify which clients to be considered at a given stage 
of the training. Clients that pass this filter are candidates for client selection.
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Solving this problem exactly 
requires exponential queries 
to the objective function!
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We use a greedy algorithm instead 
for non-monotone combinatorial 
maximization, which approximates 
the solution in linear time! 



Theoretical guarantees

Theorem 1. Under some assumptions (L-smoothness, -strong convexity, bounded 
variance of stochastic gradients, gradient norms and heterogeneity) 

we have:
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The above result guarantees the convergence rate of  ( ) of FilFL up to 

a certain neighborhood , which depends on the quality of filtering. 
The φ term encodes the approximation error of the filtering algorithm. 
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Client Filtering enhances FL algorithms

Tab1. Best achieved test accuracy for FedAvg vs FilFL 

both using PoC as a selection method.

Best test Accuracy over Rounds

CIFAR-10 FEMNIST Shakespeare

FedAvg 68% 70% 45%

FilFL 75% 78% 55%



FilFL sensitivity to Hyperparameters
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Conclusion

We proposed client filtering as a promising technique to optimize client 
participation and training in FL. 


Our proposed FL algorithm, FilFL, which incorporates our greedy filtering 
algorithm, has:


• Theoretical convergence guarantees.


• Better learning efficiency.


• Accelerated convergence.


• Higher test accuracy across different vision and language tasks.


• Potentially more robust selection. 
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