
July 25, 2022
ACM PODC 2022 Workshop on Principles of Distributed Learning

Scalable Algorithms for Distributed
Principal Component Analysis

Waheed U. Bajwa
Department of Electrical and Computer Engineering

Rutgers University–New Brunswick

http://www.inspirelab.us

http://www.inspirelab.us/

July 25, 2022
ACM PODC 2022 Workshop on Principles of Distributed Learning

Scalable Algorithms for Distributed
Principal Component AnalysisScalable Algorithms for Distributed Singular Value

Decomposition (SVD)

Alternative Talk Title

Waheed U. Bajwa
Department of Electrical and Computer Engineering

Rutgers University–New Brunswick

http://www.inspirelab.us

http://www.inspirelab.us/

Collaborators and Selected Papers

Arpita Gang

Haroon Raja

Bingqing Xiang

1. H. Raja and W. U. Bajwa, “Cloud K-SVD: A collaborative dictionary learing
algorithm for big, distributed data,” IEEE Transactions on Signal Processing,
vol. 64, no. 1, pp. 173–188, Jan. 2016, doi: 10.1109/TSP.2015.2472372.

2. H. Raja and W. U. Bajwa, “Distributed stochastic algorithms for high-rate
streaming principal component analysis,” arXiv preprint arXiv:2001.01017,
Jan. 2020. Available: http://arxiv.org/abs/2001.01017

3. A. Gang, B. Xiang, and W. U. Bajwa, “Distributed principal subspace analysis
for partitioned big data: Algorithms, analysis, and implementation,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 7, pp.
699–715, Oct. 2021, doi: 10.1109/TSIPN.2021.3122297.

4. A. Gang and W. U. Bajwa, “A linearly convergent algorithm for distributed
principal component analysis,” EURASIP Journal on Signal Processing, vol.
193, p. 108408, Apr. 2022, doi: 10.1016/j.sigpro.2021.108408.

5. A. Gang and W. U. Bajwa, “FAST-PCA: A fast and exact algorithm for
distributed principal component analysis,” arXiv preprint arXiv:2108.12373v2,
Feb. 2022, doi: 10.48550/arXiv.2108.12373.

Latest list of relevant papers from the INSPIRE Lab: Google Scholar Page

The Role of Feature Representation in Machine Learning

Success of any machine learning (ML) algorithm largely depends on the input data
(or feature) ‘representation’

A good feature representation method has one/some of the attributes:
• Tackles curse of dimensionality

• Uncorrelatedness/Disentanglement

• Abstraction

• Transferable

• Etc.

The Role of Feature Representation in Machine Learning

Success of any machine learning (ML) algorithm largely depends on the input data
(or feature) ‘representation’

A good feature representation method has one/some of the attributes:
• Tackles curse of dimensionality

• Uncorrelatedness/Disentanglement

• Abstraction

• Transferable

• Etc.

Raw data is high dimensional. But it usually lies in (or near) low-dimensional spaces.
• Finding the low-dimensional representations makes data easier to process

The Role of Feature Representation in Machine Learning

Success of any machine learning (ML) algorithm largely depends on the input data
(or feature) ‘representation’

A good feature representation method has one/some of the attributes:
• Tackles curse of dimensionality

• Uncorrelatedness/Disentanglement

• Abstraction

• Transferable

• Etc.

Raw data is high dimensional. But it usually lies in (or near) low-dimensional spaces.
• Finding the low-dimensional representations makes data easier to process

In parallel, learning uncorrelated feature representations are also known to help
many downstream ML algorithms.[1]

[1] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2013 Aug;35(8):1798-1828. DOI: 10.1109/tpami.2013.50. PMID: 23787338.

Feature Learning Methods

Principal Component Analysis (PCA): Pearson 1901
Low-Rank Matrix Factorization: Eckart, Young 1936
Linear Discriminant Analysis: Fisher 1936
Independent Component Analysis: Comon 1994
Dictionary Learning: Aharon et al. 2006
Autoencoders: Rumelhart et al. 1986
Many more ...

Image sources: Comp Three Inc. (S. Flores) and Penn State’s STAT 508 course notes

Feature Learning Methods

Principal Component Analysis (PCA): Pearson 1901
Low-Rank Matrix Factorization: Eckart, Young 1936
Linear Discriminant Analysis: Fisher 1936
Independent Component Analysis: Comon 1994
Dictionary Learning: Aharon et al. 2006
Autoencoders: Rumelhart et al. 1986
Many more ...

Image sources: Comp Three Inc. (S. Flores) and Penn State’s STAT 508 course notes

Feature Learning Methods

Principal Component Analysis (PCA): Pearson 1901
Low-Rank Matrix Factorization: Eckart, Young 1936
Linear Discriminant Analysis: Fisher 1936
Independent Component Analysis: Comon 1994
Dictionary Learning: Aharon et al. 2006
Autoencoders: Rumelhart et al. 1986
Many more ...

Image sources: Comp Three Inc. (S. Flores) and Penn State’s STAT 508 course notes

Principal Component Analysis (PCA)

An unsupervised learning technique that reduces a set of “raw” features
representing a data point to a smaller set of uncorrelated features

Data setup
• Data points are sampled from a distribution
• Assume zero mean and covariance

PCA finds a matrix such that
• It represents an orthogonal basis of the K-dimensional principal subspace
• It gives minimum reconstruction error representation of .
• It results in K uncorrelated features i.e., is diagonal

The PCA problem can be formulated as:

Principal Component Analysis (PCA)

An unsupervised learning technique that reduces a set of “raw” features
representing a data point to a smaller set of uncorrelated features

Data setup
• Data points are sampled from a distribution
• Assume zero mean and covariance

PCA finds a matrix such that
• It represents an orthogonal basis of the K-dimensional principal subspace
• It gives minimum reconstruction error representation of .
• It results in K uncorrelated features i.e., is diagonal

The PCA problem can be formulated as:

PCA Solution: Reduced Singular Value Decomposition (SVD) of the data matrix
(reduced Eigen Value Decomposition (EVD) of sample covariance)

PCA: A Visual Example

Source: geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/

Each image is 62 x 47 pixels, i.e., of dimension 2,914

PCA: A Visual Example

Source: geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/

Each image is 62 x 47 pixels, i.e., of dimension 2,914

PCA: A Visual Example

Source: geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/

Each image is 62 x 47 pixels, i.e., of dimension 2,914

Image can be represented as a combination of 12 eigenfaces

Hebbian Learning Rule (Oja’s Rule)

Neuroscientific rule trying to imitate the learning process of brain neurons [Hebb ‘49].
For a single neuron with stochastic inputs , the Hebbian update
is as follows:

D. O. Hebb, The Organization of Behavior : A Neuropsychological Theory. Wiley New York, 1949.

(1)

Hebbian Learning Rule (Oja’s Rule)

Neuroscientific rule trying to imitate the learning process of brain neurons [Hebb ‘49].
For a single neuron with stochastic inputs , the Hebbian update
is as follows:

Adapted for use in autoencoders for data compression with an added normalization

For normalization

D. O. Hebb, The Organization of Behavior : A Neuropsychological Theory. Wiley New York, 1949.

(1)

(2)

Weights

Learned feature

Generalized Hebbian Learning Rule

First used by Oja[1], this update rule was shown to converge to the dominant
eigenvector of asymptotically.

Later, Sanger[2] combined the Hebbian update with Gram-Schmidt orthogonalization
to give the generalized Hebbian algorithm (GHA) that can estimate multiple
dominant eigenvectors.

Learned features

[1] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix,” J. Math. Anal
Applicat., vol. 106, no. 1, pp. 69 – 84, 1985.
[2] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Netw., vol. 2, no. 6, pp. 459 –473, 89.

Krasulina’s Method[1]

Another stochastic approximation for estimating the dominant eigenvector while
processing one sample at a time.

If estimating the dominant eigenvector is posed as the optimization problem

Then Krasulina’s method looks similar to applying stochastic gradient descent to (1)

(1)

[1] T. P. Krasulina, “Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random
matrices,” Autom. Remote Control, vol. 1970, pp. 215–221, 1970.

A Challenge: Data is Massive and Distributed

Modern (massive) datasets end up being distributed for various reasons
• Parallel computing—data gets distributed for storage reasons and computational

speed ups
• Federated systems—multiple sensors collect data; system uses a central coordinating

node
• Distributed systems—multiple sensors collect data; system lacks a central server

Parallel computing Federated system
(e.g., sensor network)

Distributed system
(e.g., IoT system)

Types of Data Distribution

Feature-wise Split Sample-wise Split

By Features: Each node has some features of the data samples; nodes then learn
parts of the low-dimensional space

By Samples: Each node has some samples; each node learns the complete low
dimensional space

Types of Data Distribution

Feature-wise Split Sample-wise Split

By Features: Each node has some features of the data samples; nodes then learn
parts of the low-dimensional space

By Samples: Each node has some samples; each node learns the complete low
dimensional space

Types of Data Distribution

Feature-wise Split Sample-wise Split

By Features: Each node has some features of the data samples; nodes then learn
parts of the low-dimensional space

By Samples: Each node has some samples; each node learns the complete low
dimensional space

Distributed PCA in Batch Settings

When data are ‘massive, high-dimensional and sample-wise distributed’

Distributed Setup and Goal

We assume the following setup:
• A set of N nodes connected in an arbitrary network.

• The graph underlying the network is undirected.

• Samples are scattered in the network.

• Each node has samples in (Local covariance matrix)

Nodes collaboratively learn the eigenvectors of

Recipe for a Good Distributed PCA Algorithm

Computationally inexpensive steps
• One that does not perform any computationally expensive steps

Communication efficient
• One that exchanges smaller sized messages between nodes

• One that does not require too many exchange of messages

Provable convergence
• One that converges to the true eigenvectors of the covariance matrix at a linear rate

(exponentially fast) when the error metric is the angle between the true and estimated
eigenvectors

Existing Approaches

Centralized solutions for PCA
• Power Method, Orthogonal Iteration: Golub ’83

• Hebbian rule based methods: Oja ’82, Sanger ‘89, APEX model

• Krasulina’s Method: Krasulina’ 70

Distributed solutions for PCA
• Early PCA: Fellus et al. ’14

– Involves doing SVD in each iteration, finds principal subspace

• Distributed Power Method: Raja-Bajwa ’16, Wai et al. ’17[1]

– Only finds dominant eigenvector, two-time step method

• Distributed Orthogonal Iterations: Gang-Xiang-Bajwa ’21
– Finds the principal subspace only, two-time step method

• DeEPCA: Ye-Zhang ’21[2]

– Finds the principal subspace only, two-time step method

BUT, we want distributed solutions!

“Nice” convergence
guarantees

[1] H. Wai, A. Scaglione, J. Lafond, and E. Moulines, “Fast and privacy preserving distributed low-rank regression,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Process., (ICASSP), 2017, pp. 4451–4455.
[2] H. Ye and T. Zhang, “DeEPCA: Decentralized exact PCA with linear convergence rate,” Journal of Machine Learning Research, pp. 1–27, 2021.

Summary of the ‘Best’ Existing Solutions

Comm./iteration Number of Iterations Total Comm.
DistSeqPM

(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21

Summary of the ‘Best’ Existing Solutions

Comm./iteration Number of Iterations Total Comm.
DistSeqPM

(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21

Summary of the ‘Best’ Existing Solutions

Comm./iteration Number of Iterations Total Comm.
DistSeqPM

(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21

Summary of the ‘Best’ Existing Solutions

Comm./iteration Number of Iterations Total Comm.
DistSeqPM

(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21

Summary of the ‘Best’ Existing Solutions

Comm./iteration Number of Iterations Total Comm.
DistSeqPM

(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21

Distributed PCA: The Road Ahead

Can we obtain solutions that provably converge to the true eigenvectors?
• We desire PCA solutions and not just the PSA solutions.

Can we reduce dependence of the complexity on the eigen gap and the final error?
• Can we reduce or do away with extra communication steps? Is there a faster solution?

We need a distributed PCA solution that is both fast and exact

Distributed PCA: The Road Ahead

Can we obtain solutions that provably converge to the true eigenvectors?
• We desire PCA solutions and not just the PSA solutions.

Can we reduce dependence of the complexity on the eigen gap and the final error?
• Can we reduce or do away with extra communication steps? Is there a faster solution?

We need a distributed PCA solution that is both fast and exact

Idea: A ‘gradient tracking’-based solution

Solution: Fast and exAct diSTributed PCA (FAST-PCA)

: estimate of the eigenvector at node i after t iterations.

: estimate of the average of pseudo gradients at node i after t iterations.

FAST-PCA: Communication with Neighbors

FAST-PCA: Update equation

are averaging weights. Depend on the number of neighbors.

Assumptions

Underlying graph of N nodes is undirected and connected.

Weight matrix is doubly stochastic, hence

The eigenvalues of covariance matrix has distinct first K eigenvalues, the
following holds:

FAST-PCA-O: First Variant

Theorem

FAST-PCA-O: First Variant

Based On Hebbian (Oja’s) rule Gram-Schmidt orthogonalization

Theorem

FAST-PCA-O: First Variant

Based On Hebbian (Oja’s) rule Gram-Schmidt orthogonalization

Theorem

FAST-PCA-K: Second Variant

Theorem

FAST-PCA-K: Second Variant

Based On Krasulina’s rule Gram-Schmidt orthogonalization

Theorem

FAST-PCA-K: Second Variant

Based On Krasulina’s rule Gram-Schmidt orthogonalization

Theorem

Communication and Iteration Complexity

Comm./iteration Iterations Total Comm.

DistSeqPM
(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DSA
(PCA) 1

FAST-PCA
(PCA) 1

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16,
Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21
DSA (Distributed Sanger’s Algorithm): Gang-Bajwa ’21
FAST-PCA: Gang-Bajwa ‘21, ’22 (submitted; EUSIPCO)

Communication and Iteration Complexity

Comm./iteration Iterations Total Comm.

DistSeqPM
(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DSA
(PCA) 1

FAST-PCA
(PCA) 1

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16,
Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21
DSA (Distributed Sanger’s Algorithm): Gang-Bajwa ’21
FAST-PCA: Gang-Bajwa ‘21, ’22 (submitted; EUSIPCO)

Simulations: Performance Metric and Setup

We use the angles between our estimates and true eigenvectors of the
sample covariance matrix as the performance metric.

Average error for estimating K eigenvectors at N nodes after t iterations:

Setup:
• Generated an Erdos-Renyi graph of N nodes with connectivity prob. p = 0.5.
• Samples are generated identically and independently from a zero mean Gaussian

distribution.
• Samples are equally divided among the nodes.
• 10 Monte-Carlo trials for each synthetic data experiments.

FAST-PCA-O vs FAST-PCA-K

Synthetic Data: Performance Comparison

gapr = 0.8 gapr = 0.97,
GHA (Generalized Hebbian Algorithm): Sanger’82
OI (Orthogonal Iteration): Golub’83
SeqPM (Sequential Power Method): Ext. of Golub’83
SeqDistPM (Sequential Distributed Power Method): Ext. of Raja-Bajwa ‘16, Wai et al. ‘17
S-DOT, SA-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21
DSA (Distributed Sanger’s Algorithm): Gang-Bajwa ’21
FAST-PCA-O/K: Gang-Bajwa ’22 (submitted)

Real Data

MNIST CIFAR10

Conclusion and Open Questions

This talk dealt with the distributed PCA problem when the data samples are split
across an arbitrary network
• Distributed Batch Setting: Two algorithms based on the neural network formulation were

developed and analyzed
• The algorithms linearly converge to the true eigenvectors of the sample covariance
• The iteration / communications complexity of the algorithms only depends

logarithmically on the eigen gap
• The Krasulina variant of the algorithm allows for a larger step size, compared to the Oja

variant, which can lead to faster convergence in some settings

Open Questions
• Is the dependence on the eigen gap optimal, or can it be improved?
• How do these algorithms behave in the case of time-varying networks, directed networks,

and/or asynchronous networks?
• What kind of algorithms can be developed in the case of both feature- and sample-wise

partitioning of data in the case of massively large datasets?
• And many more ...

	Slide Number 1
	Slide Number 2
	Collaborators and Selected Papers
	The Role of Feature Representation in Machine Learning
	The Role of Feature Representation in Machine Learning
	The Role of Feature Representation in Machine Learning
	Feature Learning Methods
	Feature Learning Methods
	Feature Learning Methods
	Principal Component Analysis (PCA)
	Principal Component Analysis (PCA)
	PCA: A Visual Example
	PCA: A Visual Example
	PCA: A Visual Example
	Hebbian Learning Rule (Oja’s Rule)
	Hebbian Learning Rule (Oja’s Rule)
	Generalized Hebbian Learning Rule
	Krasulina’s Method[1]
	A Challenge: Data is Massive and Distributed
	Types of Data Distribution
	Types of Data Distribution
	Types of Data Distribution
	Distributed PCA in Batch Settings
	Distributed Setup and Goal
	Recipe for a Good Distributed PCA Algorithm
	Existing Approaches
	Summary of the ‘Best’ Existing Solutions
	Summary of the ‘Best’ Existing Solutions
	Summary of the ‘Best’ Existing Solutions
	Summary of the ‘Best’ Existing Solutions
	Summary of the ‘Best’ Existing Solutions
	Distributed PCA: The Road Ahead
	Distributed PCA: The Road Ahead
	Solution: Fast and exAct diSTributed PCA (FAST-PCA)
	FAST-PCA: Communication with Neighbors
	FAST-PCA: Update equation
	Assumptions
	FAST-PCA-O: First Variant
	FAST-PCA-O: First Variant
	FAST-PCA-O: First Variant
	FAST-PCA-K: Second Variant
	FAST-PCA-K: Second Variant
	FAST-PCA-K: Second Variant
	Communication and Iteration Complexity
	Communication and Iteration Complexity
	Simulations: Performance Metric and Setup
	FAST-PCA-O vs FAST-PCA-K
	Synthetic Data: Performance Comparison
	Real Data
	Conclusion and Open Questions

