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The Role of Feature Representation in Machine Learning

Success of any machine learning (ML) algorithm largely depends on the input data 
(or feature) ‘representation’

A good feature representation method has one/some of the attributes:
• Tackles curse of dimensionality

• Uncorrelatedness/Disentanglement

• Abstraction

• Transferable

• Etc.
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The Role of Feature Representation in Machine Learning

Success of any machine learning (ML) algorithm largely depends on the input data 
(or feature) ‘representation’

A good feature representation method has one/some of the attributes:
• Tackles curse of dimensionality

• Uncorrelatedness/Disentanglement

• Abstraction

• Transferable

• Etc.

Raw data is high dimensional. But it usually lies in (or near) low-dimensional spaces.
• Finding the low-dimensional representations makes data easier to process

In parallel, learning uncorrelated feature representations are also known to help
many downstream ML algorithms.[1]

[1] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 2013 Aug;35(8):1798-1828. DOI: 10.1109/tpami.2013.50. PMID: 23787338.



Feature Learning Methods

Principal Component Analysis (PCA): Pearson 1901
Low-Rank Matrix Factorization: Eckart, Young 1936
Linear Discriminant Analysis: Fisher 1936
Independent Component Analysis: Comon 1994
Dictionary Learning: Aharon et al. 2006
Autoencoders: Rumelhart et al. 1986
Many more ...

Image sources: Comp Three Inc. (S. Flores) and Penn State’s STAT 508 course notes
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Principal Component Analysis (PCA)

An unsupervised learning technique that reduces a set of “raw” features
representing a data point to a smaller set of uncorrelated features

Data setup
• Data points                 are sampled from a distribution
• Assume zero mean and covariance                          

PCA finds a matrix                                     such that
• It represents an orthogonal basis of the K-dimensional principal subspace
• It gives minimum reconstruction error representation of     .
• It results in K uncorrelated features i.e.,                              is diagonal

The PCA problem can be formulated as:



Principal Component Analysis (PCA)

An unsupervised learning technique that reduces a set of “raw” features
representing a data point to a smaller set of uncorrelated features

Data setup
• Data points                 are sampled from a distribution
• Assume zero mean and covariance                          

PCA finds a matrix                                     such that
• It represents an orthogonal basis of the K-dimensional principal subspace
• It gives minimum reconstruction error representation of     .
• It results in K uncorrelated features i.e.,                              is diagonal

The PCA problem can be formulated as:

PCA Solution: Reduced Singular Value Decomposition (SVD) of the data matrix 
(reduced Eigen Value Decomposition (EVD) of sample covariance)



PCA: A Visual Example

Source: geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/

Each image is 62 x 47 pixels, i.e., of dimension 2,914
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PCA: A Visual Example

Source: geeksforgeeks.org/ml-face-recognition-using-eigenfaces-pca-algorithm/

Each image is 62 x 47 pixels, i.e., of dimension 2,914

Image can be represented as a combination of 12 eigenfaces



Hebbian Learning Rule (Oja’s Rule)

Neuroscientific rule trying to imitate the learning process of brain neurons [Hebb ‘49].
For a single neuron with stochastic inputs                             , the Hebbian update
is as follows:

D. O. Hebb, The Organization of Behavior : A Neuropsychological Theory. Wiley New York, 1949.

(1)



Hebbian Learning Rule (Oja’s Rule)

Neuroscientific rule trying to imitate the learning process of brain neurons [Hebb ‘49].
For a single neuron with stochastic inputs                             , the Hebbian update
is as follows:

Adapted for use in autoencoders for data compression with an added normalization

For normalization

D. O. Hebb, The Organization of Behavior : A Neuropsychological Theory. Wiley New York, 1949.

(1)

(2)

Weights

Learned feature



Generalized Hebbian Learning Rule

First used by Oja[1], this update rule was shown to converge to the dominant
eigenvector of                                asymptotically.

Later, Sanger[2] combined the Hebbian update with Gram-Schmidt orthogonalization
to give the generalized Hebbian algorithm (GHA) that can estimate multiple
dominant eigenvectors.

Learned features

[1] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix,” J. Math. Anal  
Applicat., vol. 106, no. 1, pp. 69 – 84, 1985.
[2] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Netw., vol. 2, no. 6, pp. 459 –473, 89.



Krasulina’s Method[1]

Another stochastic approximation for estimating the dominant eigenvector while
processing one sample at a time.

If estimating the dominant eigenvector is posed as the optimization problem

Then Krasulina’s method looks similar to applying stochastic gradient descent to (1)

(1)

[1] T. P. Krasulina, “Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random 
matrices,” Autom. Remote Control, vol. 1970, pp. 215–221, 1970.



A Challenge: Data is Massive and Distributed

Modern (massive) datasets end up being distributed for various reasons
• Parallel computing—data gets distributed for storage reasons and computational

speed ups
• Federated systems—multiple sensors collect data; system uses a central coordinating

node
• Distributed systems—multiple sensors collect data; system lacks a central server

Parallel computing Federated system
(e.g., sensor network)

Distributed system
(e.g., IoT system)



Types of Data Distribution

Feature-wise Split Sample-wise Split

By Features: Each node has some features of the data samples; nodes then learn
parts of the low-dimensional space

By Samples: Each node has some samples; each node learns the complete low
dimensional space
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Distributed PCA in Batch Settings

When data are ‘massive, high-dimensional and sample-wise distributed’



Distributed Setup and Goal

We assume the following setup:
• A set of N nodes connected in an arbitrary network.

• The graph underlying the network is undirected.

• Samples                                                         are scattered in the network.

• Each node    has       samples in                            (Local covariance matrix )

Nodes collaboratively learn the eigenvectors of 



Recipe for a Good Distributed PCA Algorithm

Computationally inexpensive steps
• One that does not perform any computationally expensive steps

Communication efficient
• One that exchanges smaller sized messages between nodes

• One that does not require too many exchange of messages

Provable convergence
• One that converges to the true eigenvectors of the covariance matrix at a linear rate 

(exponentially fast) when the error metric is the angle between the true and estimated 
eigenvectors



Existing Approaches

Centralized solutions for PCA
• Power Method, Orthogonal Iteration: Golub ’83      

• Hebbian rule based methods: Oja ’82, Sanger ‘89, APEX model

• Krasulina’s Method: Krasulina’ 70

Distributed solutions for PCA
• Early PCA: Fellus et al. ’14

– Involves doing SVD in each iteration, finds principal subspace

• Distributed Power Method: Raja-Bajwa ’16, Wai et al. ’17[1]

– Only finds dominant eigenvector, two-time step method

• Distributed Orthogonal Iterations: Gang-Xiang-Bajwa ’21
– Finds the principal subspace only, two-time step method

• DeEPCA: Ye-Zhang ’21[2]

– Finds the principal subspace only, two-time step method

BUT, we want distributed solutions!

“Nice” convergence 
guarantees

[1] H. Wai, A. Scaglione, J. Lafond, and E. Moulines, “Fast and privacy preserving distributed low-rank regression,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Process., (ICASSP), 2017, pp. 4451–4455.
[2] H. Ye and T. Zhang, “DeEPCA: Decentralized exact PCA with linear convergence rate,” Journal of Machine Learning Research, pp. 1–27, 2021.



Summary of the ‘Best’ Existing Solutions

Comm./iteration Number of Iterations Total Comm.
DistSeqPM

(PCA)

S-DOT 
(PSA)

DeEPCA
(PSA)

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21
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Distributed PCA: The Road Ahead

Can we obtain solutions that provably converge to the true eigenvectors?
• We desire PCA solutions and not just the PSA solutions.

Can we reduce dependence of the complexity on the eigen gap and the final error?
• Can we reduce or do away with extra communication steps? Is there a faster solution?

We need a distributed PCA solution that is both fast and exact



Distributed PCA: The Road Ahead

Can we obtain solutions that provably converge to the true eigenvectors?
• We desire PCA solutions and not just the PSA solutions.

Can we reduce dependence of the complexity on the eigen gap and the final error?
• Can we reduce or do away with extra communication steps? Is there a faster solution?

We need a distributed PCA solution that is both fast and exact

Idea: A ‘gradient tracking’-based solution



Solution: Fast and exAct diSTributed PCA (FAST-PCA)

: estimate of the        eigenvector at node i after t iterations.

: estimate of the average of pseudo gradients                 at node i after t iterations.



FAST-PCA: Communication with Neighbors



FAST-PCA: Update equation

are averaging weights. Depend on the number of neighbors. 



Assumptions

Underlying graph of N nodes is undirected and connected.

Weight matrix                        is doubly stochastic, hence 

The eigenvalues      of covariance matrix      has distinct first K eigenvalues, the 
following holds:



FAST-PCA-O: First Variant

Theorem



FAST-PCA-O: First Variant

Based On Hebbian (Oja’s) rule Gram-Schmidt orthogonalization

Theorem



FAST-PCA-O: First Variant

Based On Hebbian (Oja’s) rule Gram-Schmidt orthogonalization

Theorem



FAST-PCA-K: Second Variant

Theorem



FAST-PCA-K: Second Variant

Based On Krasulina’s rule Gram-Schmidt orthogonalization

Theorem



FAST-PCA-K: Second Variant

Based On Krasulina’s rule Gram-Schmidt orthogonalization

Theorem



Communication and Iteration Complexity

Comm./iteration Iterations Total Comm.

DistSeqPM
(PCA)

S-DOT
(PSA)

DeEPCA
(PSA)

DSA 
(PCA) 1

FAST-PCA
(PCA) 1

DistSeqPM (Distributed Sequential Power Method): Extension of DePM (Raja-Bajwa ‘16, 
Wai et al. ’17)
S-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21
DSA (Distributed Sanger’s Algorithm): Gang-Bajwa ’21
FAST-PCA: Gang-Bajwa ‘21, ’22 (submitted; EUSIPCO)
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Simulations: Performance Metric and Setup

We use the angles between our estimates           and true eigenvectors       of the
sample covariance matrix      as the performance metric.

Average error for estimating K eigenvectors at N nodes after t iterations:

Setup: 
• Generated an Erdos-Renyi graph of N nodes with connectivity prob. p = 0.5.
• Samples are generated identically and independently from a zero mean Gaussian 

distribution.
• Samples are equally divided among the nodes.
• 10 Monte-Carlo trials for each synthetic data experiments.



FAST-PCA-O vs FAST-PCA-K



Synthetic Data: Performance Comparison

gapr = 0.8 gapr = 0.97, 
GHA (Generalized Hebbian Algorithm): Sanger’82
OI (Orthogonal Iteration): Golub’83
SeqPM (Sequential Power Method): Ext. of Golub’83
SeqDistPM (Sequential Distributed Power Method): Ext. of Raja-Bajwa ‘16, Wai et al. ‘17
S-DOT, SA-DOT (Sample-wise Distributed Orthogonal Iterations): Gang-Xiang-Bajwa ’21
DeEPCA (Decentralized Exact PCA): Ye-Zhang ’21
DSA (Distributed Sanger’s Algorithm): Gang-Bajwa ’21
FAST-PCA-O/K: Gang-Bajwa ’22 (submitted)



Real Data

MNIST CIFAR10



Conclusion and Open Questions

This talk dealt with the distributed PCA problem when the data samples are split 
across an arbitrary network
• Distributed Batch Setting: Two algorithms based on the neural network formulation were 

developed and analyzed
• The algorithms linearly converge to the true eigenvectors of the sample covariance
• The iteration / communications complexity of the algorithms only depends 

logarithmically on the eigen gap
• The Krasulina variant of the algorithm allows for a larger step size, compared to the Oja

variant, which can lead to faster convergence in some settings

Open Questions
• Is the dependence on the eigen gap optimal, or can it be improved?
• How do these algorithms behave in the case of time-varying networks, directed networks, 

and/or asynchronous networks?
• What kind of algorithms can be developed in the case of both feature- and sample-wise 

partitioning of data in the case of massively large datasets?
• And many more ...
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