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   Personalization is now ubiquitous 



Why is personalization challenging? 

•  Huge volume of data: small portion of interest 

•  Dynamic and diverse interests 

•  Interesting stuff does not come always from friends 

•  Classical notification systems do not filter enough or too much 
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KNN-based collaborative filtering 



The Web-Alter ego project 
Extracting like-minded Internet users should be a basic Web 

service 

Goals of Web Alter-Ego :  cross-apps KNN-based collaborative filtering 

1.  Provides an efficient scalable infrastructure 

2.  Provides privacy guarantees 
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HyRec: Leveraging Browsers 
for Scalable Recommenders 
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Personalization 

Personalization schemes are resource greedy 

 

•  Fully decentralized systems, scalable but difficult to manage 

•   Centralized systems need huge computational power  
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Democratizing personalization is also crucial 
for small web content providers 
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HyRec’s challenge 
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 HyRec: tasks to offload 

No data stored at the client 

Javascript (Interaction with the server's api) 

•   KNN computation  

•  Compute  recommendations 
 

 

r 
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Sample:   Identify the candidate 
set (Two-hop neighborhood +  k 
random) 
Orchestrator :   
•  Personalization job (json) 

containing profile +  profiles of 
users in the CS 

•  Update the knn table 



View similarity  
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Dataset Users Items Ratings 

MovieLens1 943 1700  100,000 

MovieLens2 6,040 4000 1,000,000 

MovieLens3 69,878 10,000 10,000,000 

Digg 59,167 7724 782,807 

Hyrec remains within 20% 
of the ideal KNN 



Recommendation quality 
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NB of recommendations 

Less than 13% below 
the best case 



HyRec versus the client load 
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Figure 8: HyRec: Impact of the profile size on the band-
width overhead.

5.4.2 HyRec client evaluation

We now evaluate the cost of operating HyRec on the
client. Our solution introduces a set of tasks on the client
side, namely the KNN computation, item recommenda-
tion, and sending update messages. No data structure
needs to be maintained locally. This makes it possible for
a user to use HyRec with the same profile from various
devices. For HyRec to be sustainable, the operation of
HyRec should not significantly impact the performance
of a user’s machine. Conversely, HyRec should be able
to run regardless of the device used and its load. We now
report on experiences to show that HyRec operation is
compatible with these requirements.

Impact of HyRec on a client machine. We first mea-
sure the impact of operating the HyRec widget on an ap-
plication running on the user device. To this end, we run,
on the laptop, an application executing a similarity com-
putation in an infinite loop and measure the progress of
the application as the number of iterations achieved over
a given time window.

Figure 9 shows the number of iterations achieved on
a laptop in four different settings while artificially vary-
ing the CPU usage of the client machine using a stress
tool [13]: (i) there is no other application running on the
client machine (referred as baseline in the figure); (ii)
the client executes an infinite loop on HyRec operations
(KNN selection and item recommendation, the profile
size is set to 100); (iii) the client runs an infinite loop
that requests some HTTP content (i.e. an item of 1,004
bytes from a RSS feed) to a server and displays the con-
tent on a web page in a browser (display operation); (iv)
the client runs a fully decentralized recommender [18].
This includes the P2P network management as well as
the recommendation operations (KNN selection and rec-
ommendation). Results show that HyRec has almost the
same impact on a client machine than requesting an item
from a RSS feed and displaying it in a web page. This
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Figure 9: Impact of HyRec widget, a decentralized rec-
ommender and a display operation on a client machine.

demonstrates that the impact of HyRec on the client ma-
chine is minimal.

Interestingly enough, the decentralized recommender
has slightly less impact on the client. However, the op-
eration and impact is stable over time since it is due to
the overlay network management. However, in HyRec,
the impact is noticeable only when a recommendation
is computed. In addition, HyRec operation, running in
the browser, is totally transparent for users compared
to a P2P solution which requires a dedicated software
and may encounter some limitations related to churn and
NAT traversal.

We also measure the impact of the HyRec widget, run-
ning in a browser, on other applications running on an-
other tab of the browser while varying the CPU usage.
Results (not displayed here for space reason) show no
impact of the HyRec computation job on another job
within the same browser. This is due to the fact that the
browser considers each tab as a different process without
links or shared resources.

These experiments demonstrate the negligible disrup-
tion of HyRec computing the KNN and recommendation
locally from a client’s browser.

Impact of CPU usage on the HyRec client. We now
evaluate to what extent the recommendation tasks of
HyRec are impacted by the CPU usage of the client ma-
chine on two different devices: a laptop with Firefox us-
ing Ethernet and a smartphone with Android using the
Wi-Fi. We measure the time spent by the widget within a
browser with a profile size set to 100. To artificially im-
pose load on client machines, we use the antutu bench-
mark [2] and stress [13] on the smartphone and the lap-
top, respectively. Figure 10 shows the average time re-
quired on client machines to execute the HyRec recom-
mendation tasks depending on the CPU usage on (i) a
laptop and (ii) a smartphone. We observe that even on a
client machine with a CPU loaded at 50%, HyRec tasks
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Figure 10: Impact of the client machine load on the
HyRec client.

can be executed in less than 60ms on the smartphone and
less than 10ms on a laptop. We also observe that this
time increases only slowly on the laptop as the CPU gets
more loaded. This conveys the fact that the impact of the
HyRec widget on the client is very limited.

Experiments show that HyRec can safely runs on a
client machine, even if the client machine is overloaded.

Impact of the profile size. As opposed to the server,
the impact of the profile size on the HyRec client is min-
imal. Figure 11 shows the HyRec tasks duration (KNN
and recommendation tasks) on both a smartphone and a
laptop with k = 10 and k = 20. Results show that the
combined time for KNN selection and recommendation
only increases by less than a factor of 1.5 and 7.2 for a
laptop and a smartphone, respectively, with profile size
ranging from 10 to 500 for a system with k = 10 (Fig-
ure 11). We observe that although the HyRec operations
run faster on a laptop than on a smartphone, the impact
is limited on the client, demonstrating the scalability of
HyRec widget with respect to the profile size.

HyRec scales very well with an increasing profile size
or candidate set size both on a laptop and a smartphone.

Impact on the bandwidth consumption. The band-
width overhead on the HyRec client as well as on the
server is very limited even with large profiles, alike to
the fully decentralized recommender since the KNN se-
lection is similar. Yet, while maintaining the overlay
network in a P2P recommender requires a periodic and
continuous exchange of profiles, typically every minute,
HyRec operates only upon a client request. For instance,
on the Digg dataset (with an average of 13 ratings per
user), the bandwidth required for the P2P recommender
per user is approximately 24MB while it is down to 8kB
in HyRec (3% of the of the bandwidth consumption of
the P2P solution). This bandwidth overhead is clearly
a limitation of the P2P recommender in mobile environ-
ments.

 10

 100

 1000

 0  100  200  300  400  500

m
s

Profile size

smartphone k=10
smartphone k=20

laptop k=10
laptop k=20

Figure 11: Profile size’s impact on the HyRec widget.

6 Concluding remarks

We report in this paper on the design and evaluation of
HyRec, a user-based collaborative filtering system that
can be adopted by various web applications. The mo-
tivation of this work is to explore solutions that could
in some sense democratize personalization by making it
accessible to any content provider company without gen-
erating huge investments.

The architecture of HyRec is hybrid in the sense that
it lies between traditional centralized systems on the one
hand, and fully decentralized P2P solutions on the other.
HyRec seeks to provide the scalability of P2P approaches
without forcing content providers to give up the control
of the system. Unlike fully decentralized approaches, the
lightweight web widget of HyRec does not require clients
to install specific software, and its centralization of sys-
tem aspects, like connections and disconnections to and
from the system, enables its realistic deployment in a dy-
namic system.

By leveraging the hardware and computation power of
client machines, content providers can limit the resources
they dedicate to personalization. By orchestrating per-
sonalization within dedicated servers, we make the entire
system tractable. HyRec is generic and can operate in
many contexts. In its current version, it relies on recom-
mendation algorithms that can be run independently by
each user. Exploring recommendation algorithms oper-
ating on global information is an interesting perspective.

Also, while the impact of unstrusted and malicious
nodes are limitted in HyRec (a user computes only its
own recommendation) we do not cover privacy and pro-
tection in this paper. Clearly, sharing profiles among
users can compromise their privacy. We are currently
experimenting HyRec with two privacy mechanisms.
The first mechanism hides the user/profile association
through anonymous mapping. However, in some appli-
cations, the profile itself might be enough to identify the
associated user. The second mechanism protects profiles
using homomorphic encryption.
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Impact of HyRec Impact of the client load 

Negligible disruption of HyRec  50% load 
<60ms on smartphone 
<10ms on laptop 
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HyRec versus a centralized 
recommender 
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Figure 6: Average response time for HyRec versus CRec
according to the profile size (k = 10).

ML1, and artificially control the size of the profiles. Re-
sults are similar with the other datasets. In addition,
our experiments model the worst case by considering the
largest possible candidate set for a given k (ignoring the
decreasing size of the candidate set as the neighborhood
converge). Finally, since KNN update messages from the
client to the server is negligible compared to the other
messages, we ignore them in the evaluation.

5.4.1 HyRec server evaluation

We now compare the load on the server and its ability
to scale when running HyRec or the front-end server of
CRec, when increasing the number of clients or the size
of the user profiles.

Impact of the profile size. The size of the user profile
directly impacts the performance of the servers (HyRec
and CRec). This is clearly application-dependent: for in-
stance users tend to rate news articles more often than
they rate movies. Typically, in HyRec, the larger the pro-
file, the larger the size of the messages sent over from
the HyRec server to a HyRec client. In CRec, the profile
size impacts the time spent to compute item recommen-
dation: the larger the profile, the longer the item recom-
mendation process.

In order to evaluate the impact of the profile size, we
run an experiment varying the profile size and evaluate
the response time on the HyRec server and the CRec
front-end server. We use ab [1], a benchmark tool pro-
vided by Apache. Figure 6 plots the average (over 1000
requests) response time to serve a client request in HyRec
and CRec with an increasing profile size. Results show
that HyRec consistently achieves a better response time
(50% on average) than CRec and this is clearer as the size
of profile increases. This can be explained by the fact
that the item recommendation on the CRec server takes
consistently longer than HyRec’s personalization orches-
trator takes to build messages.
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Figure 7: HyRec vs CRec with a growing number of con-
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Impact of the number of users. Clearly the number
of users may have a large impact on the performance of
HyRec. Figure 7 compares HyRec with CRec when fac-
ing a growing number of concurrent requests from users
with profile sizes (ps) of 10 and 100. As expected, with
smaller profile size, the requests are served more rapidly
in both HyRec or CRec. Yet, HyRec consistently outper-
forms CRec regardless of the profile size. Results show
that HyRec is able to serve as many concurrent requests
with a profile size of 1000 as CRec with a profile size
of 10. This represents a clear improvement in the scal-
ablbility of the front-end server by up to 500% for very
large profiles.

Impact on the bandwidth consumption. Finally, the
profile size impacts HyRec’s bandwidth consumption.
Indeed, by delegating expensive computation tasks to
clients, HyRec generates a communication overhead with
respect to a centralized architecture. Figure 8 shows the
impact of the profile size on the size of the JSON mes-
sages generated by the HyRec server upon a client re-
quest. Results show that the size of the JSON message
grows almost linearly with the profile size. However, in
HyRec the messages are compressed through gzip on the
fly by the server resulting in a bandwidth consumption
of less than 10KB even with a profile size of 500 (around
71% of compression). Note that the bandwidth consump-
tion is also impacted by the size of the candidate set. The
candidate set size considered here is an upper bound (the
candidate set quickly converges to a smaller value). This
overhead is negligible when compared to the average size
of a current web page (1.3MBytes [5]) and to the content
of recommendations themselves, which can include pic-
tures and text.

These results demonstrate that HyRec scales better
with both the profile size and the number of concurrent
requests that a centralized approach.
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Figure 6: Average response time for HyRec versus CRec
according to the profile size (k = 10).

ML1, and artificially control the size of the profiles. Re-
sults are similar with the other datasets. In addition,
our experiments model the worst case by considering the
largest possible candidate set for a given k (ignoring the
decreasing size of the candidate set as the neighborhood
converge). Finally, since KNN update messages from the
client to the server is negligible compared to the other
messages, we ignore them in the evaluation.

5.4.1 HyRec server evaluation

We now compare the load on the server and its ability
to scale when running HyRec or the front-end server of
CRec, when increasing the number of clients or the size
of the user profiles.

Impact of the profile size. The size of the user profile
directly impacts the performance of the servers (HyRec
and CRec). This is clearly application-dependent: for in-
stance users tend to rate news articles more often than
they rate movies. Typically, in HyRec, the larger the pro-
file, the larger the size of the messages sent over from
the HyRec server to a HyRec client. In CRec, the profile
size impacts the time spent to compute item recommen-
dation: the larger the profile, the longer the item recom-
mendation process.

In order to evaluate the impact of the profile size, we
run an experiment varying the profile size and evaluate
the response time on the HyRec server and the CRec
front-end server. We use ab [1], a benchmark tool pro-
vided by Apache. Figure 6 plots the average (over 1000
requests) response time to serve a client request in HyRec
and CRec with an increasing profile size. Results show
that HyRec consistently achieves a better response time
(50% on average) than CRec and this is clearer as the size
of profile increases. This can be explained by the fact
that the item recommendation on the CRec server takes
consistently longer than HyRec’s personalization orches-
trator takes to build messages.
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Impact of the number of users. Clearly the number
of users may have a large impact on the performance of
HyRec. Figure 7 compares HyRec with CRec when fac-
ing a growing number of concurrent requests from users
with profile sizes (ps) of 10 and 100. As expected, with
smaller profile size, the requests are served more rapidly
in both HyRec or CRec. Yet, HyRec consistently outper-
forms CRec regardless of the profile size. Results show
that HyRec is able to serve as many concurrent requests
with a profile size of 1000 as CRec with a profile size
of 10. This represents a clear improvement in the scal-
ablbility of the front-end server by up to 500% for very
large profiles.

Impact on the bandwidth consumption. Finally, the
profile size impacts HyRec’s bandwidth consumption.
Indeed, by delegating expensive computation tasks to
clients, HyRec generates a communication overhead with
respect to a centralized architecture. Figure 8 shows the
impact of the profile size on the size of the JSON mes-
sages generated by the HyRec server upon a client re-
quest. Results show that the size of the JSON message
grows almost linearly with the profile size. However, in
HyRec the messages are compressed through gzip on the
fly by the server resulting in a bandwidth consumption
of less than 10KB even with a profile size of 500 (around
71% of compression). Note that the bandwidth consump-
tion is also impacted by the size of the candidate set. The
candidate set size considered here is an upper bound (the
candidate set quickly converges to a smaller value). This
overhead is negligible when compared to the average size
of a current web page (1.3MBytes [5]) and to the content
of recommendations themselves, which can include pic-
tures and text.

These results demonstrate that HyRec scales better
with both the profile size and the number of concurrent
requests that a centralized approach.
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Take away message 

Scalable recommendation engines 

 

Decentralized algorithms design 

 

Hybrid infrastructures 
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 D2P: Distance-Based 
Differential Privacy in 
Recommenders.  
R. Guerraoui, A.-M. Kermarrec, R. Patra, and M. 
Taziki.  
VLDB 2015 



About privacy 

Ex: Netflix challenge 2 and IMDB (Internet Movie Database) 

 

« privacy expert Larry Ponemon says that Netflix could have 

likely avoided the matter altogether by using a technique 

called “data masking” that would have randomized its data 

set while still keeping the data relevant to developers » 
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Problem statement 

1)  Collaborative filtering relies on users profiles 

2)  Privacy guarantees needed 
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D2P: Distance-based Differential Privacy 
protocol: probabilistic substitution techniques 
to create the Alter-ego profile  



Differential Privacy [Dwork 2006] 

Prob(Q(D))/Prob(Q(D+/-1)) ≤ eε 

Prob(R|true world = D)/Prob(R|true world = D+-1) ≤ eε 
 

The released result R gives minimal evidence about whether 

or not any given individual contributed to the data set. 

 

Adding (Laplacian) noise 

 
 

Anne-Marie Kermarrec - Inria 5 mars 2015 -Google ZUrich 



DP2: DP applied to recommenders 

•  DP: Avoid any user to guess, based on her 

recommandations whether some other users has one 

item I  in her profile 

•  D2P: And any item within some distance λ from I 
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D2P builds an  alter-ego profile where some 
items are probabilistically replaced  



Technical challenge: trade-off 
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Distance 
to the 

original 
profile 

Privacy 

Quality 



  

Example D2P selects  
•  movies with distance less 

than an upper bound with 
prob.  p, 

•  random movies with prob. 
1-p 



D2P Recommender 
1- A group Gi, contains all 
items with distance less 
than λ from i 

Distance between 
 items (i and j) = 
(1/cos_sim(i,j)) - 1  

3 – KNN 
computation 

2 - Create Alter-egos  
profile for each user 
(item substitution) 

4 –  Recommendations 



D2P  Components 

●  Selector:  This component decides whether to replace 

an item with a close item or any item. 
 

 

●  Profiler:  This component builds the Alter-Ego profiles 

by replacing the items based on Selector’s decision. 
 

 



Construction of the alter-ego profile 

Will be 
replaced by a 

group item  

User Profile 

Item x 

Will be 
replaced by a 
random item  

Item 
from Gx  

Rando
m item 

Alter-egosProfile 

1-p 

1-p* 

p 

p* 

1-p* 



Distance-based Differential Privacy 

For any two adjacent profile sets D1 and D2, where U denotes any arbitrary 

user, S denotes any possible subset of elements and GRP(S) denotes union 

of element-wise groups of items in subset S, then any mechanism R is  private 

if the following inequality holds: 

 

 

We show (Theorem 1) that a mechanim M relying on 
Alter-egos profile is an (ε, λ) mechanism  



Experimental evaluation 



Experimental setup 

•  Training set (80%) – Test set (20%) 

•  Metrics  

•  Precision =  Tp/(Tp+Fp) 

•  Recall = Tp/(Tp+Fp) 

•  Datasets 

•  MovieLens (100k ratings, 943 users, 1602 movies) 

•  Jester ( 4.1M ratings, 73 421 users, 100 jokes) – 500 

users 
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Impact of Rating Density 

  



Effect of Selector probability p 
(MovieLens) 

The lower p (fewer random substitutions) 
the better the recommendation quality 



Effect of Selector Probability p (jester) 



Effect of Profiler Probability (p*) 
(MovieLens) 

The higher p* (the closer to the true profile)  the better  
the recommendation quality 



Effect of Profiler Probability p* (jester) 



Overhead 

●  We compare the overhead of our system with the 

overhead in [1] 
 

 

 

 

 
[1]. McSherry, Frank, and Ilya Mironov. "Differentially private recommender systems: building privacy into the net." Proceedings of the 15th 

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009. 



To take away 

Low-overhead solution 

Extension of differential privacy to recommenders 

 

Future plans in Web Alter-Ego 

•  Anonymous recommenders 

•  Quantifying the privacy impact of a click 

•  Impact of cross-applications 



THANK YOU 
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