
The Web Alter-Ego project

Rachid Guerraoui (EPFL) & Anne-Marie Kermarrec (Inria)

Google Focused Award

Anne-Marie Kermarrec - Inria 5 mars 2015 -Google ZUrich

 Personalization is now ubiquitous

Why is personalization challenging?

•  Huge volume of data: small portion of interest

•  Dynamic and diverse interests

•  Interesting stuff does not come always from friends

•  Classical notification systems do not filter enough or too much

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

KNN-based collaborative filtering

The Web-Alter ego project
Extracting like-minded Internet users should be a basic Web

service

Goals of Web Alter-Ego : cross-apps KNN-based collaborative filtering

1.  Provides an efficient scalable infrastructure

2.  Provides privacy guarantees

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

TEAM
Nitin Chiluka (postdoc Inria)
Nupur Mittal (PhD student Inria)
Rhicheek Patra (PhD student EPFL)
Antoine Rault (PhD student Inria)
Masha Taziki (PhD student EPFL)
Jingjing Wang(PhD student EPFL)

Main results so far

[1] A. Boutet, D. Frey, R. Guerraoui, A.-M. Kermarrec, and R. Patra. Hyrec:

Leveraging browsers for scalable recommenders. In ACM/IFIP/USENIX

MIDDLEWARE 2014.

[2] R. Guerraoui, A.-M. Kermarrec, R. Patra, and M. Taziki. D2P: Distance-Based

Differential Privacy in Recommenders. In Volume 8 Issue 8, PVLDB, 2015

[3] D. Frey, R. Guerraoui, A.-M. Kermarrec, A. Rault (INRIA) F. Taïani, J. Wang.

Hide & Share: Landmark-based Similarity for Private KNN Computation. IEEE/IFIP

DSN 2015

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

HyRec: Leveraging Browsers
for Scalable Recommenders

Antoine Boutet, Davide Frey, Rachid Guerraoui, Anne-
Marie Kermarrec, Rhicheek Patra
Middleware 2014

Personalization

Personalization schemes are resource greedy

•  Fully decentralized systems, scalable but difficult to manage

•  Centralized systems need huge computational power

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Democratizing personalization is also crucial
for small web content providers

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

HyRec’s challenge

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

 HyRec: tasks to offload

No data stored at the client

Javascript (Interaction with the server's api)

•  KNN computation

•  Compute recommendations

r

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Sample: Identify the candidate
set (Two-hop neighborhood + k
random)
Orchestrator :
•  Personalization job (json)

containing profile + profiles of
users in the CS

•  Update the knn table

View similarity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

A
ve

ra
g

e
 V

ie
w

 S
im

ila
ri
ty

Time (day)

HyRec k=10
HyRec k=10 IR=7

HyRec k=20
Exhaustive k=10

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Dataset Users Items Ratings

MovieLens1 943 1700 100,000

MovieLens2 6,040 4000 1,000,000

MovieLens3 69,878 10,000 10,000,000

Digg 59,167 7724 782,807

Hyrec remains within 20%
of the ideal KNN

Recommendation quality

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10

R
e

co
m

m
e

n
d

a
tio

n
 Q

u
a

lit
y

NB Recommendation

HyRec
Exhaustive p=24h
Exhaustive p=1h
Exhaustive best

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

NB of recommendations

Less than 13% below
the best case

HyRec versus the client load

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

kB

Profile size

json
gzip

Figure 8: HyRec: Impact of the profile size on the band-
width overhead.

5.4.2 HyRec client evaluation

We now evaluate the cost of operating HyRec on the
client. Our solution introduces a set of tasks on the client
side, namely the KNN computation, item recommenda-
tion, and sending update messages. No data structure
needs to be maintained locally. This makes it possible for
a user to use HyRec with the same profile from various
devices. For HyRec to be sustainable, the operation of
HyRec should not significantly impact the performance
of a user’s machine. Conversely, HyRec should be able
to run regardless of the device used and its load. We now
report on experiences to show that HyRec operation is
compatible with these requirements.

Impact of HyRec on a client machine. We first mea-
sure the impact of operating the HyRec widget on an ap-
plication running on the user device. To this end, we run,
on the laptop, an application executing a similarity com-
putation in an infinite loop and measure the progress of
the application as the number of iterations achieved over
a given time window.

Figure 9 shows the number of iterations achieved on
a laptop in four different settings while artificially vary-
ing the CPU usage of the client machine using a stress
tool [13]: (i) there is no other application running on the
client machine (referred as baseline in the figure); (ii)
the client executes an infinite loop on HyRec operations
(KNN selection and item recommendation, the profile
size is set to 100); (iii) the client runs an infinite loop
that requests some HTTP content (i.e. an item of 1,004
bytes from a RSS feed) to a server and displays the con-
tent on a web page in a browser (display operation); (iv)
the client runs a fully decentralized recommender [18].
This includes the P2P network management as well as
the recommendation operations (KNN selection and rec-
ommendation). Results show that HyRec has almost the
same impact on a client machine than requesting an item
from a RSS feed and displaying it in a web page. This

 130

 140

 150

 160

 170

 180

 190

 0 20 40 60 80 100

N
u
m

b
e
r

o
f
lo

o
p
 (

M
ill

io
n
)

CPU usage (%)

Baseline
HyRec operation
Display operation

Decentralized

Figure 9: Impact of HyRec widget, a decentralized rec-
ommender and a display operation on a client machine.

demonstrates that the impact of HyRec on the client ma-
chine is minimal.

Interestingly enough, the decentralized recommender
has slightly less impact on the client. However, the op-
eration and impact is stable over time since it is due to
the overlay network management. However, in HyRec,
the impact is noticeable only when a recommendation
is computed. In addition, HyRec operation, running in
the browser, is totally transparent for users compared
to a P2P solution which requires a dedicated software
and may encounter some limitations related to churn and
NAT traversal.

We also measure the impact of the HyRec widget, run-
ning in a browser, on other applications running on an-
other tab of the browser while varying the CPU usage.
Results (not displayed here for space reason) show no
impact of the HyRec computation job on another job
within the same browser. This is due to the fact that the
browser considers each tab as a different process without
links or shared resources.

These experiments demonstrate the negligible disrup-
tion of HyRec computing the KNN and recommendation
locally from a client’s browser.

Impact of CPU usage on the HyRec client. We now
evaluate to what extent the recommendation tasks of
HyRec are impacted by the CPU usage of the client ma-
chine on two different devices: a laptop with Firefox us-
ing Ethernet and a smartphone with Android using the
Wi-Fi. We measure the time spent by the widget within a
browser with a profile size set to 100. To artificially im-
pose load on client machines, we use the antutu bench-
mark [2] and stress [13] on the smartphone and the lap-
top, respectively. Figure 10 shows the average time re-
quired on client machines to execute the HyRec recom-
mendation tasks depending on the CPU usage on (i) a
laptop and (ii) a smartphone. We observe that even on a
client machine with a CPU loaded at 50%, HyRec tasks

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

m
s

CPU usage (%)

smartphone
laptop

Figure 10: Impact of the client machine load on the
HyRec client.

can be executed in less than 60ms on the smartphone and
less than 10ms on a laptop. We also observe that this
time increases only slowly on the laptop as the CPU gets
more loaded. This conveys the fact that the impact of the
HyRec widget on the client is very limited.

Experiments show that HyRec can safely runs on a
client machine, even if the client machine is overloaded.

Impact of the profile size. As opposed to the server,
the impact of the profile size on the HyRec client is min-
imal. Figure 11 shows the HyRec tasks duration (KNN
and recommendation tasks) on both a smartphone and a
laptop with k = 10 and k = 20. Results show that the
combined time for KNN selection and recommendation
only increases by less than a factor of 1.5 and 7.2 for a
laptop and a smartphone, respectively, with profile size
ranging from 10 to 500 for a system with k = 10 (Fig-
ure 11). We observe that although the HyRec operations
run faster on a laptop than on a smartphone, the impact
is limited on the client, demonstrating the scalability of
HyRec widget with respect to the profile size.

HyRec scales very well with an increasing profile size
or candidate set size both on a laptop and a smartphone.

Impact on the bandwidth consumption. The band-
width overhead on the HyRec client as well as on the
server is very limited even with large profiles, alike to
the fully decentralized recommender since the KNN se-
lection is similar. Yet, while maintaining the overlay
network in a P2P recommender requires a periodic and
continuous exchange of profiles, typically every minute,
HyRec operates only upon a client request. For instance,
on the Digg dataset (with an average of 13 ratings per
user), the bandwidth required for the P2P recommender
per user is approximately 24MB while it is down to 8kB
in HyRec (3% of the of the bandwidth consumption of
the P2P solution). This bandwidth overhead is clearly
a limitation of the P2P recommender in mobile environ-
ments.

 10

 100

 1000

 0 100 200 300 400 500

m
s

Profile size

smartphone k=10
smartphone k=20

laptop k=10
laptop k=20

Figure 11: Profile size’s impact on the HyRec widget.

6 Concluding remarks

We report in this paper on the design and evaluation of
HyRec, a user-based collaborative filtering system that
can be adopted by various web applications. The mo-
tivation of this work is to explore solutions that could
in some sense democratize personalization by making it
accessible to any content provider company without gen-
erating huge investments.

The architecture of HyRec is hybrid in the sense that
it lies between traditional centralized systems on the one
hand, and fully decentralized P2P solutions on the other.
HyRec seeks to provide the scalability of P2P approaches
without forcing content providers to give up the control
of the system. Unlike fully decentralized approaches, the
lightweight web widget of HyRec does not require clients
to install specific software, and its centralization of sys-
tem aspects, like connections and disconnections to and
from the system, enables its realistic deployment in a dy-
namic system.

By leveraging the hardware and computation power of
client machines, content providers can limit the resources
they dedicate to personalization. By orchestrating per-
sonalization within dedicated servers, we make the entire
system tractable. HyRec is generic and can operate in
many contexts. In its current version, it relies on recom-
mendation algorithms that can be run independently by
each user. Exploring recommendation algorithms oper-
ating on global information is an interesting perspective.

Also, while the impact of unstrusted and malicious
nodes are limitted in HyRec (a user computes only its
own recommendation) we do not cover privacy and pro-
tection in this paper. Clearly, sharing profiles among
users can compromise their privacy. We are currently
experimenting HyRec with two privacy mechanisms.
The first mechanism hides the user/profile association
through anonymous mapping. However, in some appli-
cations, the profile itself might be enough to identify the
associated user. The second mechanism protects profiles
using homomorphic encryption.

12

Impact of HyRec Impact of the client load

Negligible disruption of HyRec 50% load
<60ms on smartphone
<10ms on laptop

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

N
um

be
r o

f l
oo

ps
 (M

ill
io

ns
)

HyRec versus a centralized
recommender

 1

 10

 100

 0 100 200 300 400 500

A
ve

ra
g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

Profile size

CRec k=10
CRec k=20

HyRec k=10
HyRec k=20

Figure 6: Average response time for HyRec versus CRec
according to the profile size (k = 10).

ML1, and artificially control the size of the profiles. Re-
sults are similar with the other datasets. In addition,
our experiments model the worst case by considering the
largest possible candidate set for a given k (ignoring the
decreasing size of the candidate set as the neighborhood
converge). Finally, since KNN update messages from the
client to the server is negligible compared to the other
messages, we ignore them in the evaluation.

5.4.1 HyRec server evaluation

We now compare the load on the server and its ability
to scale when running HyRec or the front-end server of
CRec, when increasing the number of clients or the size
of the user profiles.

Impact of the profile size. The size of the user profile
directly impacts the performance of the servers (HyRec
and CRec). This is clearly application-dependent: for in-
stance users tend to rate news articles more often than
they rate movies. Typically, in HyRec, the larger the pro-
file, the larger the size of the messages sent over from
the HyRec server to a HyRec client. In CRec, the profile
size impacts the time spent to compute item recommen-
dation: the larger the profile, the longer the item recom-
mendation process.

In order to evaluate the impact of the profile size, we
run an experiment varying the profile size and evaluate
the response time on the HyRec server and the CRec
front-end server. We use ab [1], a benchmark tool pro-
vided by Apache. Figure 6 plots the average (over 1000
requests) response time to serve a client request in HyRec
and CRec with an increasing profile size. Results show
that HyRec consistently achieves a better response time
(50% on average) than CRec and this is clearer as the size
of profile increases. This can be explained by the fact
that the item recommendation on the CRec server takes
consistently longer than HyRec’s personalization orches-
trator takes to build messages.

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

m
s

Number of concurrent requests

HyRec ps=100
HyRec ps=10
CRec ps=100

CRec ps=10

Figure 7: HyRec vs CRec with a growing number of con-
current requests.

Impact of the number of users. Clearly the number
of users may have a large impact on the performance of
HyRec. Figure 7 compares HyRec with CRec when fac-
ing a growing number of concurrent requests from users
with profile sizes (ps) of 10 and 100. As expected, with
smaller profile size, the requests are served more rapidly
in both HyRec or CRec. Yet, HyRec consistently outper-
forms CRec regardless of the profile size. Results show
that HyRec is able to serve as many concurrent requests
with a profile size of 1000 as CRec with a profile size
of 10. This represents a clear improvement in the scal-
ablbility of the front-end server by up to 500% for very
large profiles.

Impact on the bandwidth consumption. Finally, the
profile size impacts HyRec’s bandwidth consumption.
Indeed, by delegating expensive computation tasks to
clients, HyRec generates a communication overhead with
respect to a centralized architecture. Figure 8 shows the
impact of the profile size on the size of the JSON mes-
sages generated by the HyRec server upon a client re-
quest. Results show that the size of the JSON message
grows almost linearly with the profile size. However, in
HyRec the messages are compressed through gzip on the
fly by the server resulting in a bandwidth consumption
of less than 10KB even with a profile size of 500 (around
71% of compression). Note that the bandwidth consump-
tion is also impacted by the size of the candidate set. The
candidate set size considered here is an upper bound (the
candidate set quickly converges to a smaller value). This
overhead is negligible when compared to the average size
of a current web page (1.3MBytes [5]) and to the content
of recommendations themselves, which can include pic-
tures and text.

These results demonstrate that HyRec scales better
with both the profile size and the number of concurrent
requests that a centralized approach.

10

 1

 10

 100

 0 100 200 300 400 500

A
ve

ra
g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

Profile size

CRec k=10
CRec k=20

HyRec k=10
HyRec k=20

Figure 6: Average response time for HyRec versus CRec
according to the profile size (k = 10).

ML1, and artificially control the size of the profiles. Re-
sults are similar with the other datasets. In addition,
our experiments model the worst case by considering the
largest possible candidate set for a given k (ignoring the
decreasing size of the candidate set as the neighborhood
converge). Finally, since KNN update messages from the
client to the server is negligible compared to the other
messages, we ignore them in the evaluation.

5.4.1 HyRec server evaluation

We now compare the load on the server and its ability
to scale when running HyRec or the front-end server of
CRec, when increasing the number of clients or the size
of the user profiles.

Impact of the profile size. The size of the user profile
directly impacts the performance of the servers (HyRec
and CRec). This is clearly application-dependent: for in-
stance users tend to rate news articles more often than
they rate movies. Typically, in HyRec, the larger the pro-
file, the larger the size of the messages sent over from
the HyRec server to a HyRec client. In CRec, the profile
size impacts the time spent to compute item recommen-
dation: the larger the profile, the longer the item recom-
mendation process.

In order to evaluate the impact of the profile size, we
run an experiment varying the profile size and evaluate
the response time on the HyRec server and the CRec
front-end server. We use ab [1], a benchmark tool pro-
vided by Apache. Figure 6 plots the average (over 1000
requests) response time to serve a client request in HyRec
and CRec with an increasing profile size. Results show
that HyRec consistently achieves a better response time
(50% on average) than CRec and this is clearer as the size
of profile increases. This can be explained by the fact
that the item recommendation on the CRec server takes
consistently longer than HyRec’s personalization orches-
trator takes to build messages.

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

m
s

Number of concurrent requests

HyRec ps=100
HyRec ps=10
CRec ps=100
CRec ps=10

Figure 7: HyRec vs CRec with a growing number of con-
current requests.

Impact of the number of users. Clearly the number
of users may have a large impact on the performance of
HyRec. Figure 7 compares HyRec with CRec when fac-
ing a growing number of concurrent requests from users
with profile sizes (ps) of 10 and 100. As expected, with
smaller profile size, the requests are served more rapidly
in both HyRec or CRec. Yet, HyRec consistently outper-
forms CRec regardless of the profile size. Results show
that HyRec is able to serve as many concurrent requests
with a profile size of 1000 as CRec with a profile size
of 10. This represents a clear improvement in the scal-
ablbility of the front-end server by up to 500% for very
large profiles.

Impact on the bandwidth consumption. Finally, the
profile size impacts HyRec’s bandwidth consumption.
Indeed, by delegating expensive computation tasks to
clients, HyRec generates a communication overhead with
respect to a centralized architecture. Figure 8 shows the
impact of the profile size on the size of the JSON mes-
sages generated by the HyRec server upon a client re-
quest. Results show that the size of the JSON message
grows almost linearly with the profile size. However, in
HyRec the messages are compressed through gzip on the
fly by the server resulting in a bandwidth consumption
of less than 10KB even with a profile size of 500 (around
71% of compression). Note that the bandwidth consump-
tion is also impacted by the size of the candidate set. The
candidate set size considered here is an upper bound (the
candidate set quickly converges to a smaller value). This
overhead is negligible when compared to the average size
of a current web page (1.3MBytes [5]) and to the content
of recommendations themselves, which can include pic-
tures and text.

These results demonstrate that HyRec scales better
with both the profile size and the number of concurrent
requests that a centralized approach.

10

Impact of the number of requests Impact of the profile size

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Take away message

Scalable recommendation engines

Decentralized algorithms design

Hybrid infrastructures

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

 D2P: Distance-Based
Differential Privacy in
Recommenders.
R. Guerraoui, A.-M. Kermarrec, R. Patra, and M.
Taziki.
VLDB 2015

About privacy

Ex: Netflix challenge 2 and IMDB (Internet Movie Database)

« privacy expert Larry Ponemon says that Netflix could have

likely avoided the matter altogether by using a technique

called “data masking” that would have randomized its data

set while still keeping the data relevant to developers »

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Problem statement

1)  Collaborative filtering relies on users profiles

2)  Privacy guarantees needed

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

D2P: Distance-based Differential Privacy
protocol: probabilistic substitution techniques
to create the Alter-ego profile

Differential Privacy [Dwork 2006]

Prob(Q(D))/Prob(Q(D+/-1)) ≤ eε

Prob(R|true world = D)/Prob(R|true world = D+-1) ≤ eε

The released result R gives minimal evidence about whether

or not any given individual contributed to the data set.

Adding (Laplacian) noise

Anne-Marie Kermarrec - Inria 5 mars 2015 -Google ZUrich

DP2: DP applied to recommenders

•  DP: Avoid any user to guess, based on her

recommandations whether some other users has one

item I in her profile

•  D2P: And any item within some distance λ from I

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

D2P builds an alter-ego profile where some
items are probabilistically replaced

Technical challenge: trade-off

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Distance
to the

original
profile

Privacy

Quality

Example D2P selects
•  movies with distance less

than an upper bound with
prob. p,

•  random movies with prob.
1-p

D2P Recommender
1- A group Gi, contains all
items with distance less
than λ from i

Distance between
 items (i and j) =
(1/cos_sim(i,j)) - 1

3 – KNN
computation

2 - Create Alter-egos
profile for each user
(item substitution)

4 – Recommendations

D2P Components

●  Selector: This component decides whether to replace

an item with a close item or any item.

●  Profiler: This component builds the Alter-Ego profiles

by replacing the items based on Selector’s decision.

Construction of the alter-ego profile

Will be
replaced by a

group item

User Profile

Item x

Will be
replaced by a
random item

Item
from Gx

Rando
m item

Alter-egosProfile

1-p

1-p*

p

p*

1-p*

Distance-based Differential Privacy

For any two adjacent profile sets D1 and D2, where U denotes any arbitrary

user, S denotes any possible subset of elements and GRP(S) denotes union

of element-wise groups of items in subset S, then any mechanism R is private

if the following inequality holds:

We show (Theorem 1) that a mechanim M relying on
Alter-egos profile is an (ε, λ) mechanism

Experimental evaluation

Experimental setup

•  Training set (80%) – Test set (20%)

•  Metrics

•  Precision = Tp/(Tp+Fp)

•  Recall = Tp/(Tp+Fp)

•  Datasets

•  MovieLens (100k ratings, 943 users, 1602 movies)

•  Jester (4.1M ratings, 73 421 users, 100 jokes) – 500

users

 5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

Impact of Rating Density

Effect of Selector probability p
(MovieLens)

The lower p (fewer random substitutions)
the better the recommendation quality

Effect of Selector Probability p (jester)

Effect of Profiler Probability (p*)
(MovieLens)

The higher p* (the closer to the true profile) the better
the recommendation quality

Effect of Profiler Probability p* (jester)

Overhead

●  We compare the overhead of our system with the

overhead in [1]

[1]. McSherry, Frank, and Ilya Mironov. "Differentially private recommender systems: building privacy into the net." Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009.

To take away

Low-overhead solution

Extension of differential privacy to recommenders

Future plans in Web Alter-Ego

•  Anonymous recommenders

•  Quantifying the privacy impact of a click

•  Impact of cross-applications

THANK YOU

5 mars 2015 -Google ZUrich Anne-Marie Kermarrec - Inria

