Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
education [2019/11/08 11:02]
rouault Removed "variance reduction adversarial SGD" project
education [2019/12/19 18:01]
fablpd
Line 27: Line 27:
  
   * **[[cryptocurrencies|Cryptocurrencies]]**:​ We have several project openings as part of our ongoing research on designing new cryptocurrency systems. Please contact [[rachid.guerraoui@epfl.ch|Prof. Rachid Guerraoui]].   * **[[cryptocurrencies|Cryptocurrencies]]**:​ We have several project openings as part of our ongoing research on designing new cryptocurrency systems. Please contact [[rachid.guerraoui@epfl.ch|Prof. Rachid Guerraoui]].
 +
 +  * **On the design and implementation of scalable and secure blockchain algorithms**:​ Consensus has recently gained in popularity with the advent of blockchain technologies. Unfortunately,​ most blockchains do not scale due, in part, to their centralized (leader-based) limitation. We recently designed a promising fully decentralised (leader-less) algorithm that promises to scale to large networks. The goal of this project is to implement it in rust and compare its performance on AWS instances against a traditional leader-based alternative like BFT-Smart whose code will be provided. Contact [[https://​people.epfl.ch/​vincent.gramoli|Vincent Gramoli]] for more information.
  
   * **Probabilistic Byzantine Resilience**: ​ Development of high-performance,​ Byzantine-resilient distributed systems with provable probabilistic guarantees. Two options are currently available, both building on previous work on probabilistic Byzantine broadcast: (i) a theoretical project, focused the correctness of probabilistic Byzantine-tolerant distributed algorithms; (ii) a practical project, focused on numerically evaluating of our theoretical results. Please contact [[matteo.monti@epfl.ch|Matteo Monti]] to get more information.   * **Probabilistic Byzantine Resilience**: ​ Development of high-performance,​ Byzantine-resilient distributed systems with provable probabilistic guarantees. Two options are currently available, both building on previous work on probabilistic Byzantine broadcast: (i) a theoretical project, focused the correctness of probabilistic Byzantine-tolerant distributed algorithms; (ii) a practical project, focused on numerically evaluating of our theoretical results. Please contact [[matteo.monti@epfl.ch|Matteo Monti]] to get more information.