This is an old revision of the document!


Education


The lab is teaching the following courses:


The lab taught in the past the following courses:



Projects

Master Projects

DCL offers master projects in the following areas:

  • Accelerate Byzantine collaborative learning: Our recent NeurIPS paper proposed algorithms for collaborative machine learning in the presence of Byzantine nodes, which have been proved to be near optimal with respect to optimality at convergence. However, these algorithms require all-to-all communication at every round, which is suboptimal. This research consists of designing a practical solution to Byzantine collaborative learning, based on the idea of a random communication network at each round, with both theoretical guarantees and practical implementation. Contact Sadegh Farhadkhani for more information.
  • Probabilistic Byzantine Resilience: Development of high-performance, Byzantine-resilient distributed systems with provable probabilistic guarantees. Two options are currently available, both building on previous work on probabilistic Byzantine broadcast: (i) a theoretical project, focused the correctness of probabilistic Byzantine-tolerant distributed algorithms; (ii) a practical project, focused on numerically evaluating of our theoretical results. Please contact Matteo Monti to get more information.
  • Microsecond-scale dependable systems. Modern networking technologies such as RDMA (Remote Direct Memory Access) allow for sub-microsecond communication latency. Combined with emerging data center architectures, such as disaggregated resources pools, they open the door to novel blazing-fast and resource-efficient systems. Our research focuses on designing such microsecond-scale systems that can also tolerate faults. Our vision is that tolerating network asynchrony as well as faults (crash and/or Byzantine) is a must, but that it shouldn't affect the overall performance of a system. We achieve this goal by devising and implementing novel algorithms tailored for new hardware and revisiting theoretical models to better reflect modern data centers. Previous work encompasses microsecond-scale (BFT) State Machine Replication, Group Membership Services and Key-Value Stores (OSDI'20, ATC'22 and ASPLOS'23). Overall, if you are interested in making data centers faster and safer, contact Athanasios Xygkis and Antoine Murat for more information.



Semester Projects

If the subject of a Master Project interests you as a Semester Project, please contact the supervisor of the Master Project to see if it can be considered for a Semester Project.

EPFL I&C duration, credits and workload information are available here. Don't hesitate to contact the project supervisor if you want to complete your Semester Project outside the regular semester period.